In vitro activity of cefepime/zidebactam and cefepime/taniborbactam against aztreonam/avibactam-resistant NDM-like-producing Escherichia coli clinical isolates.
Détails
Télécharger: 36921067_BIB_EFAE29C261A1.pdf (146.48 [Ko])
Etat: Public
Version: Final published version
Licence: CC BY 4.0
Etat: Public
Version: Final published version
Licence: CC BY 4.0
ID Serval
serval:BIB_EFAE29C261A1
Type
Article: article d'un périodique ou d'un magazine.
Collection
Publications
Institution
Titre
In vitro activity of cefepime/zidebactam and cefepime/taniborbactam against aztreonam/avibactam-resistant NDM-like-producing Escherichia coli clinical isolates.
Périodique
The Journal of antimicrobial chemotherapy
ISSN
1460-2091 (Electronic)
ISSN-L
0305-7453
Statut éditorial
Publié
Date de publication
03/05/2023
Peer-reviewed
Oui
Volume
78
Numéro
5
Pages
1191-1194
Langue
anglais
Notes
Publication types: Journal Article ; Research Support, Non-U.S. Gov't
Publication Status: ppublish
Publication Status: ppublish
Résumé
Aztreonam/avibactam is one of the last therapeutic options for treating infections caused by NDM-like-producing Enterobacterales. However, PBP3-modified and NDM-producing Escherichia coli strains that co-produce CMY-42 have been shown to be resistant to this drug combination. The aim of our study was to assess the in vitro activity of cefepime/taniborbactam and cefepime/zidebactam against such aztreonam/avibactam-resistant E. coli strains.
MIC values of aztreonam, aztreonam/avibactam, cefepime, cefepime/taniborbactam, cefepime/zidebactam and zidebactam alone were determined for 28 clinical aztreonam/avibactam-resistant E. coli isolates. Those isolates produced either NDM-5 (n = 24), NDM-4 (n = 2) or NDM-1 (n = 2), and they all co-produced CMY-42 (n = 28). They all harboured a four amino acid insertion in PBP-3 (Tyr-Arg-Ile-Asn or Tyr-Arg-Ile-Lys).
All strains were resistant to aztreonam/avibactam and cefepime, as expected. The resistance rate to cefepime/taniborbactam was 100%, with MIC50 and MIC90 being at 16 mg/L and 64 mg/L, respectively. Conversely, all strains were susceptible to cefepime/zidebactam, with both MIC50 and MIC90 at 0.25 mg/L. Notably, all strains showed low MICs for zidebactam alone, with MIC50 and MIC90 at 0.5 mg/L and 1 mg/L.
Our data highlighted the excellent in vitro performance of the newly developed β-lactam/β-lactamase inhibitor combination cefepime/zidebactam against aztreonam/avibactam-resistant E. coli strains, suggesting that this combination could be considered as an efficient therapeutic option in this context. Our study also highlights the cross-resistance between acquired resistance to aztreonam/avibactam and the cefepime/taniborbactam combination.
MIC values of aztreonam, aztreonam/avibactam, cefepime, cefepime/taniborbactam, cefepime/zidebactam and zidebactam alone were determined for 28 clinical aztreonam/avibactam-resistant E. coli isolates. Those isolates produced either NDM-5 (n = 24), NDM-4 (n = 2) or NDM-1 (n = 2), and they all co-produced CMY-42 (n = 28). They all harboured a four amino acid insertion in PBP-3 (Tyr-Arg-Ile-Asn or Tyr-Arg-Ile-Lys).
All strains were resistant to aztreonam/avibactam and cefepime, as expected. The resistance rate to cefepime/taniborbactam was 100%, with MIC50 and MIC90 being at 16 mg/L and 64 mg/L, respectively. Conversely, all strains were susceptible to cefepime/zidebactam, with both MIC50 and MIC90 at 0.25 mg/L. Notably, all strains showed low MICs for zidebactam alone, with MIC50 and MIC90 at 0.5 mg/L and 1 mg/L.
Our data highlighted the excellent in vitro performance of the newly developed β-lactam/β-lactamase inhibitor combination cefepime/zidebactam against aztreonam/avibactam-resistant E. coli strains, suggesting that this combination could be considered as an efficient therapeutic option in this context. Our study also highlights the cross-resistance between acquired resistance to aztreonam/avibactam and the cefepime/taniborbactam combination.
Mots-clé
Aztreonam/pharmacology, Cefepime/pharmacology, Escherichia coli, Anti-Bacterial Agents/pharmacology, beta-Lactamases/metabolism, Cephalosporins/pharmacology, Azabicyclo Compounds/pharmacology, beta-Lactamase Inhibitors/pharmacology, Microbial Sensitivity Tests
Pubmed
Web of science
Open Access
Oui
Création de la notice
20/03/2023 10:11
Dernière modification de la notice
08/08/2024 6:42