Wadge Hierarchy and Veblen Hierarchy. Part II: Borel Sets of Infinite Rank

Détails

ID Serval
serval:BIB_EE6DF1A95BFA
Type
Non publié: un document ayant un auteur et un titre, mais non publié.
Collection
Publications
Titre
Wadge Hierarchy and Veblen Hierarchy. Part II: Borel Sets of Infinite Rank
Auteur⸱e⸱s
Duparc J.
Langue
anglais
Notes
submitted to the Journal of Symbolic Logic
Résumé
We consider Borel sets of the form A ⊆ Λω (with usual topology) where cardinality of Λ is less than some uncountable regular cardinal Κ. We obtain a ``normal form'' of A, by finding a Borel set Ω(α) such that A and Ω(α) continuously reduce to each other. We do so by defining Borel operations which are homomorphic to the Κ first Veblen ordinal functions of base Κ required to compute the Wadge degree of the set A: the ordinal α.
Création de la notice
23/01/2008 19:47
Dernière modification de la notice
20/08/2019 16:15
Données d'usage