Multi-labelled Image Segmentation in Irregular, Weighted Networks: A Spatial Autocorrelation Approach
Détails
Télécharger: GISTAM_2017_42.pdf (4490.48 [Ko])
Etat: Public
Version: de l'auteur⸱e
Etat: Public
Version: de l'auteur⸱e
ID Serval
serval:BIB_E684143F02FF
Type
Actes de conférence (partie): contribution originale à la littérature scientifique, publiée à l'occasion de conférences scientifiques, dans un ouvrage de compte-rendu (proceedings), ou dans l'édition spéciale d'un journal reconnu (conference proceedings).
Collection
Publications
Institution
Titre
Multi-labelled Image Segmentation in Irregular, Weighted Networks: A Spatial Autocorrelation Approach
Titre de la conférence
Proceedings of the 3rd International Conference on Geographical Information Systems Theory, Applications and Management
Editeur
SciTePress
Organisation
International Conference on Geographical Information Systems Theory, Applications and Management
Adresse
Porto, Portugal
ISBN
978-989-758-252-3
Statut éditorial
Publié
Date de publication
2017
Peer-reviewed
Oui
Pages
62-69
Langue
anglais
Résumé
Image segmentation and spatial clustering both face the same primary problem, namely to gather together spatial entities which are both spatially close and similar regarding their features. The parallelism is partic- ularly obvious in the case of irregular, weighted networks, where methods borrowed from spatial analysis and general data analysis (soft K-means) may serve at segmenting images, as illustrated on four examples. Our semi-supervised approach considers soft memberships (fuzzy clustering) and attempts to minimize a free energy functional made of three ingredients : a within-cluster features dispersion (hard K-means), a network partitioning objective (such as the Ncut or the modularity) and a regularizing entropic term, enabling an itera- tive computation of the locally optimal soft clusters. In particular, the second functional enjoys many possible formulations, arguably helpful in unifying various conceptualizations of space through the probabilistic selec- tion of pairs of neighbours, as well as their relation to spatial autocorrelation (Moran’s I).
Mots-clé
Free Energy, Image Segmentation, Iterative Clustering, K-means, Laplacian, Modularity, Multivariate Features, Ncut, Soft Membership, Spatial Autocorrelation, Spatial Clustering.
Open Access
Oui
Création de la notice
02/05/2017 14:07
Dernière modification de la notice
20/08/2019 16:09