An absolute dose determination of helical tomotherapy accelerator, TomoTherapy High-Art II.

Détails

ID Serval
serval:BIB_E6760541C84C
Type
Article: article d'un périodique ou d'un magazine.
Collection
Publications
Institution
Titre
An absolute dose determination of helical tomotherapy accelerator, TomoTherapy High-Art II.
Périodique
Medical Physics
Auteur⸱e⸱s
Bailat C.J., Buchillier T., Pachoud M., Moeckli R., Bochud F.O.
ISSN
0094-2405 (Print)
ISSN-L
0094-2405
Statut éditorial
Publié
Date de publication
2009
Peer-reviewed
Oui
Volume
36
Numéro
9
Pages
3891-3896
Langue
anglais
Résumé
PURPOSE: A helical tomotherapy accelerator presents a dosimetric challenge because, to this day, there is no internationally accepted protocol for the determination of the absolute dose. Because of this reality, we investigated the different alternatives for characterizing and measuring the absolute dose of such an accelerator. We tested several dosimetric techniques with various metrological traceabilities as well as using a number of phantoms in static and helical modes.
METHODS: Firstly, the relationship between the reading of ionization chambers and the absorbed dose is dependent on the beam quality value of the photon beam. For high energy photons, the beam quality is specified by the tissue phantom ratio (TPR20,10) and it is therefore necessary to know the TPR20,10 to calculate the dose delivered by a given accelerator. This parameter is obtained through the ratio of the absorbed dose at 20 and 10 cm depths in water and was measured in the particular conditions of the tomotherapy accelerator. Afterward, measurements were performed using the ionization chamber (model A1SL) delivered as a reference instrument by the vendor. This chamber is traceable in absorbed dose to water in a Co-60 beam to a water calorimeter of the American metrology institute (NIST). Similarly, in Switzerland, each radiotherapy department is directly traceable to the Swiss metrology institute (METAS) in absorbed dose to water based on a water calorimeter. For our research, this traceability was obtained by using an ionization chamber traceable to METAS (model NE 2611A), which is the secondary standard of our institute. Furthermore, in order to have another fully independent measurement method, we determined the dose using alanine dosimeters provided by and traceable to the British metrology institute (NPL); they are calibrated in absorbed dose to water using a graphite calorimeter. And finally, we wanted to take into account the type of chamber routinely used in clinical practice and therefore measured the dose using a Farmer-type instrument (model NE 2571) as well.
RESULTS: We found the tomotherapy TPR20,10 value to be around 0.629, which is close to a 4 MV conventional linear accelerator value. During static irradiation, the secondary standard and the alanine dosimeters were compatible within 0.5%. The A1SL relative deviation to the secondary standard was 1.2% and the NE2571 relative deviation to the secondary standard was -1.7%. The measurement in dynamic helical mode found the different dosimeters compatible within 1.4% and the alanine dosimeters and the secondary standard were even found under 0.2%.
CONCLUSIONS: We found that the different methods are all within uncertainties as well as globally coherent, and the specific limitations of the various dosimeters are discussed in order to help the medical physicist design an independent reference system. We demonstrated that, taking into account the particular reference conditions, one can use an ionization chamber calibrated for conventional linear accelerators to assert the absolute dose delivered by a tomotherapy accelerator.
Mots-clé
Calibration, Calorimetry, Models, Theoretical, Particle Accelerators, Phantoms, Imaging, Photons/therapeutic use, Practice Guidelines as Topic, Radiation Dosage, Radiation Monitoring/methods, Radiotherapy/instrumentation, Radiotherapy/methods, Radiotherapy Dosage, Uncertainty, Water/chemistry
Pubmed
Création de la notice
11/07/2016 15:12
Dernière modification de la notice
20/08/2019 17:09
Données d'usage