Neurotransmitters regulate energy metabolism in astrocytes: implications for the metabolic trafficking between neural cells
Détails
ID Serval
serval:BIB_E598C672BD4D
Type
Article: article d'un périodique ou d'un magazine.
Sous-type
Synthèse (review): revue aussi complète que possible des connaissances sur un sujet, rédigée à partir de l'analyse exhaustive des travaux publiés.
Collection
Publications
Institution
Titre
Neurotransmitters regulate energy metabolism in astrocytes: implications for the metabolic trafficking between neural cells
Périodique
Developmental Neuroscience
ISSN
0378-5866
Statut éditorial
Publié
Date de publication
1993
Peer-reviewed
Oui
Volume
15
Numéro
3-5
Pages
306-12
Notes
Journal Article
Research Support, Non-U.S. Gov't
Review
Research Support, Non-U.S. Gov't
Review
Résumé
In recent years a vast array of experimental evidence has indicated the presence of functional receptors for neurotransmitters on nonneuronal cells, in particular astrocytes. The two neurotransmitters vasoactive intestinal peptide (VIP) and noradrenaline (NA) exert profound, receptor-mediated, metabolic actions on astrocytes. Thus both neurotransmitters stimulate glycogenolysis in primary astrocyte cultures, with EC50s of 3 and 20 nM respectively. Astrocytes display basal glucose utilization rates ranging between 3 and 9 nmol/mg prot/min, a value that is remarkably close to glucose utilization of cerebral cortical grey matter as determined by the 2-deoxyglucose autoradiographic technique. NA markedly enhances glucose uptake and phosphorylation by astrocytes, with an EC50 of 1 microM. The metabolic substrate that is released by astrocytes is predominantly lactate and not glucose. Since lactate can support neuronal activity and synaptic function in vitro, the possibility should be considered that glucose uptake by the brain parenchyma occurs predominantly into astrocytes which subsequently release lactate for the use of neurons.
Mots-clé
Animals
Astrocytes/*metabolism
Energy Metabolism/*physiology
Glucose/metabolism
Glycogen/metabolism
Humans
Neurons/*metabolism
Neurotransmitter Agents/*physiology
Norepinephrine/metabolism
Vasoactive Intestinal Peptide/metabolism
Pubmed
Web of science
Création de la notice
20/01/2008 18:22
Dernière modification de la notice
20/08/2019 16:08