The Joint Distribution of Running Maximum of a Slepian Process
Détails
ID Serval
serval:BIB_E310BF8D0A48
Type
Article: article d'un périodique ou d'un magazine.
Collection
Publications
Institution
Titre
The Joint Distribution of Running Maximum of a Slepian Process
Périodique
Methodology and Computing in Applied Probability
ISSN
1387-5841
1573-7713
1573-7713
Statut éditorial
Publié
Date de publication
12/2018
Peer-reviewed
Oui
Volume
20
Numéro
4
Pages
1123-1135
Langue
anglais
Résumé
Consider the Slepian process S defined by S(t) = B(t + 1) − B(t),t ∈ [0, 1] with B(t), t ∈ ℝ a standard Brownian motion. In this contribution we analyze the properties between the maximum ms=max0≤u≤sS(u) and the maximum mt=max0≤u≤tS(u) for 0 ≤ s < t ≤ 1 fixed. Explicit integral expressions are obtained for the joint distribution function between m s and m t and the distribution function of the partial maximum m s . Further, we apply our results for the determination of the moments of m s .
Mots-clé
Statistics and Probability, General Mathematics
Web of science
Création de la notice
15/01/2019 9:05
Dernière modification de la notice
20/08/2019 16:06