Quantitative Evaluation of Enhanced Multi-plane Clinical Fetal Diffusion MRI with a Crossing-Fiber Phantom
Détails
ID Serval
serval:BIB_E166807E6FE7
Type
Partie de livre
Sous-type
Chapitre: chapitre ou section
Collection
Publications
Institution
Titre
Quantitative Evaluation of Enhanced Multi-plane Clinical Fetal Diffusion MRI with a Crossing-Fiber Phantom
Titre du livre
Computational Diffusion MRI
Editeur
Springer International Publishing
ISBN
9783030876142
9783030876159
9783030876159
ISSN
0302-9743
1611-3349
1611-3349
Statut éditorial
Publié
Date de publication
2021
Peer-reviewed
Oui
Pages
12-22
Langue
anglais
Résumé
Diffusion Magnetic Resonance Imaging (dMRI) has become widely used to study in vivo white matter tissue properties noninvasively. However, fetal dMRI is greatly limited in Signal-to-Noise ratio and spatial resolution. Due to the uncontrollable fetal motion, echo planar imaging acquisitions often result in highly degraded images, hence the ability to depict precise diffusion MR properties remains unknown. To the best of our knowledge, this is the first study to evaluate diffusion properties in a fetal customized crossing-fiber phantom. We assessed the effect of scanning settings on diffusion quantities in a phantom specifically designed to mimic typical values in the fetal brain. Orthogonal acquisitions based on clinical fetal brain schemes were preprocessed for denoising, bias field inhomogeneity and distortion correction. We estimated the fractional anisotropy (FA) and mean diffusivity (MD) from the diffusion tensor, and the fiber orientations from the fiber orientation distribution function. Quantitative evaluation was carried out on the number of diffusion gradient directions, different orthogonal acquisitions, and enhanced 4D volumes from scattered data interpolation of multiple series. We found out that while MD does not vary with the number of diffusion gradient directions nor the number of orthogonal series, FA is slightly more accurate with more directions. Additionally, errors in all scalar diffusion maps are reduced by using enhanced 4D volumes. Moreover, reduced fiber orientation estimation errors were obtained when used enhanced 4D volumes, but not with more diffusion gradient directions. From these results, we conclude that using enhanced 4D volumes from multiple series should be preferred over using more diffusion gradient directions in clinical fetal dMRI.
Mots-clé
FetalMRIBrainPhantomDiffusion tensor imagingOrientation distribution functionScattered data interpolation
Web of science
Données de la recherche
Financement(s)
Fonds national suisse / Projets / 205321-182602
Fonds national suisse / Carrières / PZ00P2-185814
Fonds national suisse / Programmes / 185897
Commission Européenne / H2020 / 754462
Création de la notice
20/05/2022 16:49
Dernière modification de la notice
01/06/2022 5:39