Estimating RNA dynamics using one time point for one sample in a single-pulse metabolic labeling experiment.

Détails

Ressource 1Télécharger: 35459101_BIB_DEE37AA016C5.pdf (1806.71 [Ko])
Etat: Public
Version: Final published version
Licence: CC BY 4.0
ID Serval
serval:BIB_DEE37AA016C5
Type
Article: article d'un périodique ou d'un magazine.
Collection
Publications
Institution
Titre
Estimating RNA dynamics using one time point for one sample in a single-pulse metabolic labeling experiment.
Périodique
BMC bioinformatics
Auteur⸱e⸱s
Hersch M., Biasini A., Marques A.C., Bergmann S.
ISSN
1471-2105 (Electronic)
ISSN-L
1471-2105
Statut éditorial
Publié
Date de publication
22/04/2022
Peer-reviewed
Oui
Volume
23
Numéro
1
Pages
147
Langue
anglais
Notes
Publication types: Journal Article
Publication Status: epublish
Résumé
Over the past decade, experimental procedures such as metabolic labeling for determining RNA turnover rates at the transcriptome-wide scale have been widely adopted and are now turning to single cell measurements. Several computational methods to estimate RNA synthesis, processing and degradation rates from such experiments have been suggested, but they all require several RNA sequencing samples. Here we present a method that can estimate those three rates from a single sample.
Our method relies on the analytical solution to the Zeisel model of RNA dynamics. It was validated on metabolic labeling experiments performed on mouse embryonic stem cells. Resulting degradation rates were compared both to previously published rates on the same system and to a state-of-the-art method applied to the same data.
Our method is computationally efficient and outputs rates that correlate well with previously published data sets. Using it on a single sample, we were able to reproduce the observation that dynamic biological processes tend to involve genes with higher metabolic rates, while stable processes involve genes with lower rates. This supports the hypothesis that cells control not only the mRNA steady-state abundance, but also its responsiveness, i.e., how fast steady state is reached. Moreover, degradation rates obtained with our method compare favourably with the other tested method.
In addition to saving experimental work and computational time, estimating rates for a single sample has several advantages. It does not require an error-prone normalization across samples and enables the use of replicates to estimate uncertainty and assess sample quality. Finally the method and theoretical results described here are general enough to be useful in other contexts such as nucleotide conversion methods and single cell metabolic labeling experiments.
Mots-clé
Animals, Mice, RNA/metabolism, RNA, Messenger/genetics, RNA, Messenger/metabolism, Sequence Analysis, RNA/methods, Transcriptome, RNA dynamics, RNA metabolic labeling, RNA responsiveness, Zeisel model
Pubmed
Web of science
Open Access
Oui
Création de la notice
02/05/2022 13:57
Dernière modification de la notice
23/01/2024 7:35
Données d'usage