Triangular systems of probability measures on simply connected nilpotent and discrete subgroups of exponential Lie groups
Détails
ID Serval
serval:BIB_DCC16262633B
Type
Article: article d'un périodique ou d'un magazine.
Collection
Publications
Institution
Titre
Triangular systems of probability measures on simply connected nilpotent and discrete subgroups of exponential Lie groups
Périodique
Comptes Rendus de l'Académie des Sciences - Series I - Mathematics
ISSN
0764-4442
Statut éditorial
Publié
Date de publication
12/2001
Peer-reviewed
Oui
Volume
333
Numéro
11
Pages
1029-1034
Langue
anglais
Résumé
For simply connected nilpotent Lie groups G, we show that limit laws of infinitesimal triangular systems Delta of symmetric probability measures on G are infinitely divisible even if Delta is not commutative. The same holds also if the measures of Delta are supported by some fixed discrete subgroup Gamma subset of G. Furthermore, we give a weakening of Wehn's conditions for the accompanying laws theorem in the case of discrete subgroups of exponential Lie groups.
Web of science
Création de la notice
20/07/2017 10:39
Dernière modification de la notice
21/08/2019 5:16