Structured nanoscale metallic glass fibres with extreme aspect ratios.

Détails

ID Serval
serval:BIB_DB9FCDDC7698
Type
Article: article d'un périodique ou d'un magazine.
Sous-type
Synthèse (review): revue aussi complète que possible des connaissances sur un sujet, rédigée à partir de l'analyse exhaustive des travaux publiés.
Collection
Publications
Institution
Titre
Structured nanoscale metallic glass fibres with extreme aspect ratios.
Périodique
Nature nanotechnology
Auteur⸱e⸱s
Yan W., Richard I., Kurtuldu G., James N.D., Schiavone G., Squair J.W., Nguyen-Dang T., Das Gupta T., Qu Y., Cao J.D., Ignatans R., Lacour S.P., Tileli V., Courtine G., Löffler J.F., Sorin F.
ISSN
1748-3395 (Electronic)
ISSN-L
1748-3387
Statut éditorial
Publié
Date de publication
10/2020
Peer-reviewed
Oui
Volume
15
Numéro
10
Pages
875-882
Langue
anglais
Notes
Publication types: Journal Article ; Research Support, Non-U.S. Gov't
Publication Status: ppublish
Résumé
Micro- and nanoscale metallic glasses offer exciting opportunities for both fundamental research and applications in healthcare, micro-engineering, optics and electronics. The scientific and technological challenges associated with the fabrication and utilization of nanoscale metallic glasses, however, remain unresolved. Here, we present a simple and scalable approach for the fabrication of metallic glass fibres with nanoscale architectures based on their thermal co-drawing within a polymer matrix with matched rheological properties. Our method yields well-ordered and uniform metallic glasses with controllable feature sizes down to a few tens of nanometres, and aspect ratios greater than 10 <sup>10</sup> . We combine fluid dynamics and advanced in situ transmission electron microscopy analysis to elucidate the interplay between fluid instability and crystallization kinetics that determines the achievable feature sizes. Our approach yields complex fibre architectures that, combined with other functional materials, enable new advanced all-in-fibre devices. We demonstrate in particular an implantable metallic glass-based fibre probe tested in vivo for a stable brain-machine interface that paves the way towards innovative high-performance and multifunctional neuro-probes.
Pubmed
Web of science
Création de la notice
15/09/2020 11:57
Dernière modification de la notice
14/03/2023 7:49
Données d'usage