Visual stimulus-dependent changes in interhemispheric EEG coherence in ferrets.

Détails

ID Serval
serval:BIB_DB58C68FAEAF
Type
Article: article d'un périodique ou d'un magazine.
Collection
Publications
Institution
Titre
Visual stimulus-dependent changes in interhemispheric EEG coherence in ferrets.
Périodique
Journal of Neurophysiology
Auteur⸱e⸱s
Kiper D.C., Knyazeva M.G., Tettoni L., Innocenti G.M.
ISSN
0022-3077[print], 0022-3077[linking]
Statut éditorial
Publié
Date de publication
12/1999
Volume
82
Numéro
6
Pages
3082-3094
Langue
anglais
Notes
Publication types: Journal Article ; Research Support, Non-U.S. Gov't
Publication Status: ppublish
Résumé
In recent years, the analysis of the coherence between signals recorded from the scalp [electroencephalographic (EEG) coherence] has been used to assess the functional properties of cortico-cortical connections, both in animal models and in humans. However, the experimental validation of this technique is still scarce. Therefore we applied it to the study of the callosal connections between the visual areas of the two hemispheres, because this particular set of cortico-cortical connections can be activated in a selective way by visual stimuli. Indeed, in primary and in low-order secondary visual areas, callosal axons interconnect selectively regions, which represent a narrow portion of the visual field straddling the vertical meridian and, within these regions, neurons that prefer the same stimulus orientation. Thus only isooriented stimuli located near the vertical meridian are expected to change interhemispheric coherence by activating callosal connections. Finally, if such changes are found and are indeed mediated by callosal connections, they should disappear after transection of the corpus callosum. We perfomed experiments on seven paralyzed and anesthetized ferrets, recording their cortical activity with epidural electrodes on areas 17/18, 19, and lateral suprasylvian, during different forms of visual stimulation. As expected, we found that bilateral iso-oriented stimuli near the vertical meridian, or extending across it, caused a significant increase in interhemispheric coherence in the EEG beta-gamma band. Stimuli with different orientations, stimuli located far from the vertical meridian, as well as unilateral stimuli failed to affect interhemispheric EEG coherence. The stimulus-induced increase in coherence disappeared after surgical transection of the corpus callosum. The results suggest that the activation of cortico-cortical connections can indeed be revealed as a change in EEG coherence. The latter can therefore be validly used to investigate the functionality of cortico-cortical connections.
Mots-clé
Animals, Corpus Callosum/physiology, Electroencephalography, Female, Ferrets/physiology, Functional Laterality/physiology, Photic Stimulation, Visual Cortex/physiology, Visual Pathways/physiology
Pubmed
Web of science
Création de la notice
11/04/2008 12:22
Dernière modification de la notice
20/08/2019 16:00
Données d'usage