RNA interference mitigates motor and neuropathological deficits in a cerebellar mouse model of machado-joseph disease.
Détails
Télécharger: BIB_DAF662F8ACA1.P001.pdf (3010.52 [Ko])
Etat: Public
Version: de l'auteur⸱e
Etat: Public
Version: de l'auteur⸱e
ID Serval
serval:BIB_DAF662F8ACA1
Type
Article: article d'un périodique ou d'un magazine.
Collection
Publications
Institution
Titre
RNA interference mitigates motor and neuropathological deficits in a cerebellar mouse model of machado-joseph disease.
Périodique
Plos One
ISSN
1932-6203 (Electronic)
ISSN-L
1932-6203
Statut éditorial
Publié
Date de publication
2014
Peer-reviewed
Oui
Volume
9
Numéro
8
Pages
e100086
Langue
anglais
Notes
Publication types: Journal Article Publication Status: epublish
Résumé
Machado-Joseph disease or Spinocerebellar ataxia type 3 is a progressive fatal neurodegenerative disorder caused by the polyglutamine-expanded protein ataxin-3. Recent studies demonstrate that RNA interference is a promising approach for the treatment of Machado-Joseph disease. However, whether gene silencing at an early time-point is able to prevent the appearance of motor behavior deficits typical of the disease when initiated before onset of the disease had not been explored. Here, using a lentiviral-mediated allele-specific silencing of mutant ataxin-3 in an early pre-symptomatic cerebellar mouse model of Machado-Joseph disease we show that this strategy hampers the development of the motor and neuropathological phenotypic characteristics of the disease. At the histological level, the RNA-specific silencing of mutant ataxin-3 decreased formation of mutant ataxin-3 aggregates, preserved Purkinje cell morphology and expression of neuronal markers while reducing cell death. Importantly, gene silencing prevented the development of impairments in balance, motor coordination, gait and hyperactivity observed in control mice. These data support the therapeutic potential of RNA interference for Machado-Joseph disease and constitute a proof of principle of the beneficial effects of early allele-specific silencing for therapy of this disease.
Pubmed
Web of science
Open Access
Oui
Création de la notice
25/09/2014 16:54
Dernière modification de la notice
20/08/2019 16:00