Violation of Distributional Assumptions in Latent Interaction Models

Détails

ID Serval
serval:BIB_DAACD2AB1899
Type
Actes de conférence (partie): contribution originale à la littérature scientifique, publiée à l'occasion de conférences scientifiques, dans un ouvrage de compte-rendu (proceedings), ou dans l'édition spéciale d'un journal reconnu (conference proceedings).
Collection
Publications
Institution
Titre
Violation of Distributional Assumptions in Latent Interaction Models
Titre de la conférence
Academy of Management Proceedings
Auteur⸱e⸱s
Lonati Sirio, Rönkkö Mikko, Antonakis John
ISSN
0065-0668
2151-6561
Statut éditorial
Publié
Date de publication
08/2020
Volume
2020
Numéro
1
Pages
18911
Langue
anglais
Résumé
Violating the distributional assumptions of latent interaction models can lead to biased estimates and invalid inference. However, no statistical procedure is readily available to verify whether these assumptions hold. We develop several specification tests contrasting consistent latent interaction estimators—which are robust to violations of distributional assumptions (i.e., Extended Unconstrained Indicator Approach and Model-Implied Instrumental Variables method)—to an efficient estimator (i.e., Latent Moderated Structural Equations), which is inconsistent under non-normally distributed linear latent variables. We compare these estimators under a variety of conditions. The robust Hausman test we propose works well in identifying misspecifications due to violations of distributional assumptions of the latent variables. Moreover, our results indicate that the Latent Moderated Structural Equations method is severely bias under non-ideal conditions. Thus, it should not be used as the default approach and its results should always be compared to consistent estimators that are robust to distributional assumptions.
Création de la notice
04/08/2020 16:59
Dernière modification de la notice
04/06/2021 5:38
Données d'usage