Gut microbiota severely hampers the efficacy of NAD-lowering therapy in leukemia.
Détails
Télécharger: 35396381_BIB_D8A172BF5015.pdf (2282.76 [Ko])
Etat: Public
Version: Final published version
Licence: CC BY 4.0
Etat: Public
Version: Final published version
Licence: CC BY 4.0
ID Serval
serval:BIB_D8A172BF5015
Type
Article: article d'un périodique ou d'un magazine.
Collection
Publications
Institution
Titre
Gut microbiota severely hampers the efficacy of NAD-lowering therapy in leukemia.
Périodique
Cell death & disease
ISSN
2041-4889 (Electronic)
Statut éditorial
Publié
Date de publication
08/04/2022
Peer-reviewed
Oui
Volume
13
Numéro
4
Pages
320
Langue
anglais
Notes
Publication types: Journal Article
Publication Status: epublish
Publication Status: epublish
Résumé
Most cancer cells have high need for nicotinamide adenine dinucleotide (NAD <sup>+</sup> ) to sustain their survival. This led to the development of inhibitors of nicotinamide (NAM) phosphoribosyltransferase (NAMPT), the rate-limiting NAD <sup>+</sup> biosynthesis enzyme from NAM. Such inhibitors kill cancer cells in preclinical studies but failed in clinical ones. To identify parameters that could negatively affect the therapeutic efficacy of NAMPT inhibitors and propose therapeutic strategies to circumvent such failure, we performed metabolomics analyses in tumor environment and explored the effect of the interaction between microbiota and cancer cells. Here we show that tumor environment enriched in vitamin B3 (NAM) or nicotinic acid (NA) significantly lowers the anti-tumor efficacy of APO866, a prototypic NAMPT inhibitor. Additionally, bacteria (from the gut, or in the medium) can convert NAM into NA and thus fuel an alternative NAD synthesis pathway through NA. This leads to the rescue from NAD depletion, prevents reactive oxygen species production, preserves mitochondrial integrity, blunts ATP depletion, and protects cancer cells from death.Our data in an in vivo preclinical model reveal that antibiotic therapy down-modulating gut microbiota can restore the anti-cancer efficacy of APO866. Alternatively, NAphosphoribosyltransferase inhibition may restore anti-cancer activity of NAMPT inhibitors in the presence of gut microbiota and of NAM in the diet.
Mots-clé
Cell Line, Tumor, Cytokines/metabolism, Gastrointestinal Microbiome, Humans, Leukemia, NAD/metabolism, Neoplasms, Niacinamide/pharmacology, Niacinamide/therapeutic use, Nicotinamide Phosphoribosyltransferase/metabolism
Pubmed
Web of science
Open Access
Oui
Création de la notice
25/04/2022 12:01
Dernière modification de la notice
23/11/2022 7:15