Magnetoencephalography demonstrates multiple asynchronous generators during human sleep spindles.

Détails

ID Serval
serval:BIB_D442103BDA4A
Type
Article: article d'un périodique ou d'un magazine.
Collection
Publications
Institution
Titre
Magnetoencephalography demonstrates multiple asynchronous generators during human sleep spindles.
Périodique
Journal of Neurophysiology
Auteur⸱e⸱s
Dehghani N., Cash S.S., Rossetti A.O., Chen C.C., Halgren E.
ISSN
1522-1598[electronic], 0022-3077[linking]
Statut éditorial
Publié
Date de publication
2010
Volume
104
Numéro
1
Pages
179-188
Langue
anglais
Notes
Publication types: Journal Article ; Research Support, N.I.H., Extramural Publication Status: ppublish
Résumé
Sleep spindles are approximately 1 s bursts of 10-16 Hz activity that occur during stage 2 sleep. Spindles are highly synchronous across the cortex and thalamus in animals, and across the scalp in humans, implying correspondingly widespread and synchronized cortical generators. However, prior studies have noted occasional dissociations of the magnetoencephalogram (MEG) from the EEG during spindles, although detailed studies of this phenomenon have been lacking. We systematically compared high-density MEG and EEG recordings during naturally occurring spindles in healthy humans. As expected, EEG was highly coherent across the scalp, with consistent topography across spindles. In contrast, the simultaneously recorded MEG was not synchronous, but varied strongly in amplitude and phase across locations and spindles. Overall, average coherence between pairs of EEG sensors was approximately 0.7, whereas MEG coherence was approximately 0.3 during spindles. Whereas 2 principle components explained approximately 50% of EEG spindle variance, >15 were required for MEG. Each PCA component for MEG typically involved several widely distributed locations, which were relatively coherent with each other. These results show that, in contrast to current models based on animal experiments, multiple asynchronous neural generators are active during normal human sleep spindles and are visible to MEG. It is possible that these multiple sources may overlap sufficiently in different EEG sensors to appear synchronous. Alternatively, EEG recordings may reflect diffusely distributed synchronous generators that are less visible to MEG. An intriguing possibility is that MEG preferentially records from the focal core thalamocortical system during spindles, and EEG from the distributed matrix system.
Pubmed
Web of science
Création de la notice
20/07/2010 14:22
Dernière modification de la notice
20/08/2019 16:54
Données d'usage