STACAS: Sub-Type Anchor Correction for Alignment in Seurat to integrate single-cell RNA-seq data.
Détails
Télécharger: 32845323_BIB_D3F01C447F08.pdf (372.06 [Ko])
Etat: Public
Version: Final published version
Licence: CC BY 4.0
Etat: Public
Version: Final published version
Licence: CC BY 4.0
ID Serval
serval:BIB_D3F01C447F08
Type
Article: article d'un périodique ou d'un magazine.
Collection
Publications
Institution
Titre
STACAS: Sub-Type Anchor Correction for Alignment in Seurat to integrate single-cell RNA-seq data.
Périodique
Bioinformatics
ISSN
1367-4811 (Electronic)
ISSN-L
1367-4803
Statut éditorial
Publié
Date de publication
05/05/2021
Peer-reviewed
Oui
Volume
37
Numéro
6
Pages
882-884
Langue
anglais
Notes
Publication types: Journal Article ; Research Support, Non-U.S. Gov't
Publication Status: ppublish
Publication Status: ppublish
Résumé
STACAS is a computational method for the identification of integration anchors in the Seurat environment, optimized for the integration of single-cell (sc) RNA-seq datasets that share only a subset of cell types. We demonstrate that by (i) correcting batch effects while preserving relevant biological variability across datasets, (ii) filtering aberrant integration anchors with a quantitative distance measure and (iii) constructing optimal guide trees for integration, STACAS can accurately align scRNA-seq datasets composed of only partially overlapping cell populations.
Source code and R package available at https://github.com/carmonalab/STACAS; Docker image available at https://hub.docker.com/repository/docker/mandrea1/stacas_demo.
Source code and R package available at https://github.com/carmonalab/STACAS; Docker image available at https://hub.docker.com/repository/docker/mandrea1/stacas_demo.
Mots-clé
RNA-Seq, Sequence Analysis, RNA, Single-Cell Analysis, Software, Whole Exome Sequencing
Pubmed
Web of science
Open Access
Oui
Financement(s)
Fonds national suisse / Projets / 00P3_180010
Création de la notice
10/09/2020 10:18
Dernière modification de la notice
12/01/2022 7:13