On Chung's Law of Large Numbers on Simply Connected Step 2-Nilpotent Lie Groups

Détails

Ressource 1Télécharger: 94.pdf (115.83 [Ko])
Etat: Public
Version: Final published version
Licence: Non spécifiée
It was possible to publish this article open access thanks to a Swiss National Licence with the publisher.
ID Serval
serval:BIB_D3B8D9C954A2
Type
Article: article d'un périodique ou d'un magazine.
Collection
Publications
Institution
Titre
On Chung's Law of Large Numbers on Simply Connected Step 2-Nilpotent Lie Groups
Périodique
Journal of Mathematical Sciences
Auteur⸱e⸱s
Neuenschwander  D.
ISSN
1072-3374 (Print)
1573-8795 (Electronic)
Statut éditorial
Publié
Date de publication
2014
Peer-reviewed
Oui
Volume
196
Numéro
1
Pages
75-77
Langue
anglais
Résumé
Ord´o~nez Cabrera and Sung (2002) have proved that under certain "moment" conditions, for triangular arrays of weighted Banach-valued random variables, a.s. convergence, convergence in L1, convergence in probability, and complete convergence to 0 are equivalent, thus giving a variant of Chung's law of large numbers. We extend their result (under slightly sharper technical conditions) to symmetric random variables on simply connected step 2-nilpotent Lie groups.
Création de la notice
08/02/2010 16:13
Dernière modification de la notice
09/09/2021 6:14
Données d'usage