Modelling Training Adaptation in Swimming Using Artificial Neural Network Geometric Optimisation.
Détails
Télécharger: 31963218_BIB_D2E33E335C9E.pdf (1797.31 [Ko])
Etat: Public
Version: Final published version
Licence: CC BY 4.0
Etat: Public
Version: Final published version
Licence: CC BY 4.0
ID Serval
serval:BIB_D2E33E335C9E
Type
Article: article d'un périodique ou d'un magazine.
Collection
Publications
Institution
Titre
Modelling Training Adaptation in Swimming Using Artificial Neural Network Geometric Optimisation.
Périodique
Sports
ISSN
2075-4663 (Electronic)
ISSN-L
2075-4663
Statut éditorial
Publié
Date de publication
16/01/2020
Peer-reviewed
Oui
Volume
8
Numéro
1
Langue
anglais
Notes
Publication types: Journal Article
Publication Status: epublish
Publication Status: epublish
Résumé
This study aims to model training adaptation using Artificial Neural Network (ANN) geometric optimisation. Over 26 weeks, 38 swimmers recorded their training and recovery data on a web platform. Based on these data, ANN geometric optimisation was used to model and graphically separate adaptation from maladaptation (to training). Geometric Activity Performance Index (GAPI), defined as the ratio of the adaptation to the maladaptation area, was introduced. The techniques of jittering and ensemble modelling were used to reduce overfitting of the model. Correlation (Spearman rank) and independence (Blomqvist β) tests were run between GAPI and performance measures to check the relevance of the collected parameters. Thirteen out of 38 swimmers met the prerequisites for the analysis and were included in the modelling. The GAPI based on external load (distance) and internal load (session-Rating of Perceived Exertion) showed the strongest correlation with performance measures. ANN geometric optimisation seems to be a promising technique to model training adaptation and GAPI could be an interesting numerical surrogate to track during a season.
Mots-clé
machine learning, online tool, training monitoring
Pubmed
Web of science
Open Access
Oui
Création de la notice
23/01/2020 14:54
Dernière modification de la notice
08/08/2024 6:40