Unsupervised Machine Learning for the Quadratic Assignment Problem
Détails
ID Serval
serval:BIB_D15B15162282
Type
Actes de conférence (partie): contribution originale à la littérature scientifique, publiée à l'occasion de conférences scientifiques, dans un ouvrage de compte-rendu (proceedings), ou dans l'édition spéciale d'un journal reconnu (conference proceedings).
Collection
Publications
Institution
Titre
Unsupervised Machine Learning for the Quadratic Assignment Problem
Titre de la conférence
Metaheuristics
Editeur
Springer International Publishing
ISBN
9783031265037
9783031265044
9783031265044
ISSN
0302-9743
1611-3349
1611-3349
Statut éditorial
Publié
Date de publication
2023
Peer-reviewed
Oui
Pages
118-132
Langue
anglais
Résumé
An unsupervised machine learning method based on association rule is studied for the Quadratic Assignment Problem. Parallel extraction of itemsets and local search algorithms are proposed. The extraction of frequent itemsets in the context of local search is shown to produce good results for a few problem instances. Negative results of the proposed learning mechanism are reported for other instances. This result contrasts with other hard optimization problems for which efficient learning processes are known in the context of local search.
Mots-clé
Metaheuristics
Création de la notice
02/03/2023 16:58
Dernière modification de la notice
14/03/2023 6:49