Prolonged Period of Cortical Plasticity upon Redox Dysregulation in Fast-Spiking Interneurons.

Détails

Ressource 1Demande d'une copie Sous embargo indéterminé.
Accès restreint UNIL
Etat: Public
Version: de l'auteur⸱e
ID Serval
serval:BIB_CAD2CAEDEA9E
Type
Article: article d'un périodique ou d'un magazine.
Collection
Publications
Institution
Titre
Prolonged Period of Cortical Plasticity upon Redox Dysregulation in Fast-Spiking Interneurons.
Périodique
Biological Psychiatry
Auteur⸱e⸱s
Morishita H., Cabungcal J.H., Chen Y., Do K.Q., Hensch T.K.
ISSN
1873-2402 (Electronic)
ISSN-L
0006-3223
Statut éditorial
Publié
Date de publication
2015
Peer-reviewed
Oui
Volume
78
Numéro
6
Pages
396-402
Langue
anglais
Notes
Publication types: Journal Article ; Research Support, N.I.H., Extramural ; Research Support, Non-U.S. Gov't
Publication Status: ppublish
Résumé
BACKGROUND: Oxidative stress and the specific impairment of perisomatic gamma-aminobutyric acid circuits are hallmarks of the schizophrenic brain and its animal models. Proper maturation of these fast-spiking inhibitory interneurons normally defines critical periods of experience-dependent cortical plasticity.
METHODS: Here, we linked these processes by genetically inducing a redox dysregulation restricted to such parvalbumin-positive cells and examined the impact on critical period plasticity using the visual system as a model (3-6 mice/group).
RESULTS: Oxidative stress was accompanied by a significant loss of perineuronal nets, which normally enwrap mature fast-spiking cells to limit adult plasticity. Accordingly, the neocortex remained plastic even beyond the peak of its natural critical period. These effects were not seen when redox dysregulation was targeted in excitatory principal cells.
CONCLUSIONS: A cell-specific regulation of redox state thus balances plasticity and stability of cortical networks. Mistimed developmental trajectories of brain plasticity may underlie, in part, the pathophysiology of mental illness. Such prolonged developmental plasticity may, in turn, offer a therapeutic opportunity for cognitive interventions targeting brain plasticity in schizophrenia.
Mots-clé
Adaptation, Physiological, Animals, Extracellular Matrix/metabolism, GABAergic Neurons/metabolism, GABAergic Neurons/physiology, Glutamate-Cysteine Ligase/genetics, Interneurons/metabolism, Mice, Inbred C57BL, Microglia/metabolism, Neuronal Plasticity, Oxidation-Reduction, Oxidative Stress, Parvalbumins, Sensory Deprivation/physiology, Visual Cortex/metabolism, Visual Cortex/physiology
Pubmed
Web of science
Création de la notice
17/03/2015 14:53
Dernière modification de la notice
20/08/2019 15:45
Données d'usage