Circulating proteins to predict COVID-19 severity.

Détails

Ressource 1Télécharger: 37069249_BIB_CABA50A49D9F.pdf (1769.52 [Ko])
Etat: Public
Version: Final published version
Licence: CC BY 4.0
ID Serval
serval:BIB_CABA50A49D9F
Type
Article: article d'un périodique ou d'un magazine.
Collection
Publications
Institution
Titre
Circulating proteins to predict COVID-19 severity.
Périodique
Scientific reports
Auteur⸱e⸱s
Su C.Y., Zhou S., Gonzalez-Kozlova E., Butler-Laporte G., Brunet-Ratnasingham E., Nakanishi T., Jeon W., Morrison D.R., Laurent L., Afilalo J., Afilalo M., Henry D., Chen Y., Carrasco-Zanini J., Farjoun Y., Pietzner M., Kimchi N., Afrasiabi Z., Rezk N., Bouab M., Petitjean L., Guzman C., Xue X., Tselios C., Vulesevic B., Adeleye O., Abdullah T., Almamlouk N., Moussa Y., DeLuca C., Duggan N., Schurr E., Brassard N., Durand M., Del Valle D.M., Thompson R., Cedillo M.A., Schadt E., Nie K., Simons N.W., Mouskas K., Zaki N., Patel M., Xie H., Harris J., Marvin R., Cheng E., Tuballes K., Argueta K., Scott I., Greenwood CMT, Paterson C., Hinterberg M.A., Langenberg C., Forgetta V., Pineau J., Mooser V., Marron T., Beckmann N.D., Kim-Schulze S., Charney A.W., Gnjatic S., Kaufmann D.E., Merad M., Richards J.B.
Collaborateur⸱rice⸱s
Mount Sinai COVID-19 Biobank Team
ISSN
2045-2322 (Electronic)
ISSN-L
2045-2322
Statut éditorial
Publié
Date de publication
17/04/2023
Peer-reviewed
Oui
Volume
13
Numéro
1
Pages
6236
Langue
anglais
Notes
Publication types: Journal Article
Publication Status: epublish
Résumé
Predicting COVID-19 severity is difficult, and the biological pathways involved are not fully understood. To approach this problem, we measured 4701 circulating human protein abundances in two independent cohorts totaling 986 individuals. We then trained prediction models including protein abundances and clinical risk factors to predict COVID-19 severity in 417 subjects and tested these models in a separate cohort of 569 individuals. For severe COVID-19, a baseline model including age and sex provided an area under the receiver operator curve (AUC) of 65% in the test cohort. Selecting 92 proteins from the 4701 unique protein abundances improved the AUC to 88% in the training cohort, which remained relatively stable in the testing cohort at 86%, suggesting good generalizability. Proteins selected from different COVID-19 severity were enriched for cytokine and cytokine receptors, but more than half of the enriched pathways were not immune-related. Taken together, these findings suggest that circulating proteins measured at early stages of disease progression are reasonably accurate predictors of COVID-19 severity. Further research is needed to understand how to incorporate protein measurement into clinical care.
Mots-clé
Humans, COVID-19/diagnosis, Proteins, Risk Factors, Disease Progression, Retrospective Studies
Pubmed
Web of science
Open Access
Oui
Création de la notice
25/04/2023 13:15
Dernière modification de la notice
23/01/2024 7:34
Données d'usage