Künstliche Intelligenz-unterstützte Behandlung in der Rheumatologie : Grundlagen, aktueller Stand und Ausblick [Artificial intelligence-supported treatment in rheumatology : Principles, current situation and perspectives]

Détails

Ressource 1Télécharger: 34618208_BIB_C7A30F801807.pdf (2333.56 [Ko])
Etat: Public
Version: Final published version
Licence: CC BY 4.0
ID Serval
serval:BIB_C7A30F801807
Type
Article: article d'un périodique ou d'un magazine.
Sous-type
Synthèse (review): revue aussi complète que possible des connaissances sur un sujet, rédigée à partir de l'analyse exhaustive des travaux publiés.
Collection
Publications
Institution
Titre
Künstliche Intelligenz-unterstützte Behandlung in der Rheumatologie : Grundlagen, aktueller Stand und Ausblick [Artificial intelligence-supported treatment in rheumatology : Principles, current situation and perspectives]
Périodique
Zeitschrift fur Rheumatologie
Auteur⸱e⸱s
Hügle T., Kalweit M.
ISSN
1435-1250 (Electronic)
ISSN-L
0340-1855
Statut éditorial
Publié
Date de publication
12/2021
Peer-reviewed
Oui
Volume
80
Numéro
10
Pages
914-927
Langue
allemand
Notes
Publication types: Journal Article ; Review
Publication Status: ppublish
Résumé
Computer-guided clinical decision support systems have been finding their way into practice for some time, mostly integrated into electronic medical records. The primary goals are to improve the quality of treatment, save time and avoid errors. These are mostly rule-based algorithms that recognize drug interactions or provide reminder functions. Through artificial intelligence (AI), clinical decision support systems can be disruptively further developed. New knowledge is constantly being created from data through machine learning in order to predict the individual course of a patient's disease, identify phenotypes or support treatment decisions. Such algorithms already exist for rheumatological diseases. Automated image recognition and disease prediction in rheumatoid arthritis are the most advanced; however, these have not yet been sufficiently tested or integrated into existing decision support systems. Rather than dictating the AI-assisted choice of treatment to the doctor, future clinical decision systems are seen as hybrid decision support, always involving both the expert and the patient. There is also a great need for security through comprehensible and auditable algorithms to sustainably guarantee the quality and transparency of AI-assisted treatment recommendations in the long term.
Mots-clé
Algorithms, Artificial Intelligence, Decision Support Systems, Clinical, Humans, Machine Learning, Rheumatology, Automated image recognition, Decision support, Decision systems, Treatment recommendations
Pubmed
Web of science
Open Access
Oui
Création de la notice
19/10/2021 13:01
Dernière modification de la notice
08/08/2024 6:40
Données d'usage