Astrocyte-neuron lactate transport is required for long-term memory formation.
Détails
Télécharger: BIB_C2220047B1FB.P001.pdf (1159.66 [Ko])
Etat: Public
Version: de l'auteur⸱e
Etat: Public
Version: de l'auteur⸱e
ID Serval
serval:BIB_C2220047B1FB
Type
Article: article d'un périodique ou d'un magazine.
Collection
Publications
Institution
Titre
Astrocyte-neuron lactate transport is required for long-term memory formation.
Périodique
Cell
ISSN
1097-4172[electronic], 0092-8674[linking]
Statut éditorial
Publié
Date de publication
2011
Peer-reviewed
Oui
Volume
144
Numéro
5
Pages
810-823
Langue
anglais
Notes
Publication types: Journal Article Publication Status: ppublish
Résumé
We report that, in the rat hippocampus, learning leads to a significant increase in extracellular lactate levels that derive from glycogen, an energy reserve selectively localized in astrocytes. Astrocytic glycogen breakdown and lactate release are essential for long-term but not short-term memory formation, and for the maintenance of long-term potentiation (LTP) of synaptic strength elicited in vivo. Disrupting the expression of the astrocytic lactate transporters monocarboxylate transporter 4 (MCT4) or MCT1 causes amnesia, which, like LTP impairment, is rescued by L-lactate but not equicaloric glucose. Disrupting the expression of the neuronal lactate transporter MCT2 also leads to amnesia that is unaffected by either L-lactate or glucose, suggesting that lactate import into neurons is necessary for long-term memory. Glycogenolysis and astrocytic lactate transporters are also critical for the induction of molecular changes required for memory formation, including the induction of phospho-CREB, Arc, and phospho-cofilin. We conclude that astrocyte-neuron lactate transport is required for long-term memory formation.
Pubmed
Web of science
Open Access
Oui
Création de la notice
11/03/2011 15:24
Dernière modification de la notice
20/08/2019 15:37