Sedimentation and electrophoretic migration of DNA knots and catenanes.

Détails

ID Serval
serval:BIB_BFDA9494429A
Type
Article: article d'un périodique ou d'un magazine.
Collection
Publications
Institution
Titre
Sedimentation and electrophoretic migration of DNA knots and catenanes.
Périodique
Journal of Molecular Biology
Auteur⸱e⸱s
Vologodskii A.V., Crisona N.J., Laurie B., Pieranski P., Katritch V., Dubochet J., Stasiak A.
ISSN
0022-2836[print], 0022-2836[linking]
Statut éditorial
Publié
Date de publication
04/1998
Volume
278
Numéro
1
Pages
1-3
Langue
anglais
Notes
Publication types: Journal Article ; Research Support, Non-U.S. Gov't ; Research Support, U.S. Gov't, P.H.S.
Publication Status: ppublish
Résumé
Various site-specific recombination enzymes produce different types of knots or catenanes while acting on circular DNA in vitro and in vivo. By analysing the types of knots or links produced, it is possible to reconstruct the order of events during the reaction and to deduce the molecular "architecture" of the complexes that different enzymes form with DNA. Until recently it was necessary to use laborious electron microscopy methods to identify the types of knots or catenanes that migrate in different bands on the agarose gels used to analyse the products of the reaction. We reported recently that electrophoretic migration of different knots and catenanes formed on the same size DNA molecules is simply related to the average crossing number of the ideal representations of the corresponding knots and catenanes. Here we explain this relation by demonstrating that the expected sedimentation coefficient of randomly fluctuating knotted or catenated DNA molecules in solution shows approximately linear correlation with the average crossing number of ideal configurations of the corresponding knots or catenanes.
Mots-clé
Centrifugation, DNA, Circular/chemistry, Electrophoresis, Agar Gel, Linear Models, Models, Molecular, Nucleic Acid Conformation
Pubmed
Web of science
Création de la notice
24/01/2008 10:25
Dernière modification de la notice
20/08/2019 15:34
Données d'usage