Through-Plane Super-Resolution With Autoencoders in Diffusion Magnetic Resonance Imaging of the Developing Human Brain.

Détails

Ressource 1Demande d'une copie Sous embargo indéterminé.
Accès restreint UNIL
Etat: Public
Version: de l'auteur⸱e
Licence: CC BY 4.0
Document(s) secondaire(s)
Sous embargo indéterminé.
Accès restreint UNIL
Etat: Public
Version: de l'auteur⸱e
Licence: Non spécifiée
ID Serval
serval:BIB_BD4D1BDA9F16
Type
Article: article d'un périodique ou d'un magazine.
Collection
Publications
Institution
Titre
Through-Plane Super-Resolution With Autoencoders in Diffusion Magnetic Resonance Imaging of the Developing Human Brain.
Périodique
Frontiers in neurology
Auteur⸱e⸱s
Kebiri H., Canales-Rodríguez E.J., Lajous H., de Dumast P., Girard G., Alemán-Gómez Y., Koob M., Jakab A., Bach Cuadra M.
ISSN
1664-2295 (Print)
ISSN-L
1664-2295
Statut éditorial
Publié
Date de publication
2022
Peer-reviewed
Oui
Volume
13
Pages
827816
Langue
anglais
Notes
Publication types: Journal Article
Publication Status: epublish
Résumé
Fetal brain diffusion magnetic resonance images (MRI) are often acquired with a lower through-plane than in-plane resolution. This anisotropy is often overcome by classical upsampling methods such as linear or cubic interpolation. In this work, we employ an unsupervised learning algorithm using an autoencoder neural network for single-image through-plane super-resolution by leveraging a large amount of data. Our framework, which can also be used for slice outliers replacement, overperformed conventional interpolations quantitatively and qualitatively on pre-term newborns of the developing Human Connectome Project. The evaluation was performed on both the original diffusion-weighted signal and the estimated diffusion tensor maps. A byproduct of our autoencoder was its ability to act as a denoiser. The network was able to generalize fetal data with different levels of motions and we qualitatively showed its consistency, hence supporting the relevance of pre-term datasets to improve the processing of fetal brain images.
Mots-clé
autoencoders, brain, diffusion-weighted imaging, fetuses, magnetic resonance imaging (MRI), pre-term neonates, super-resolution, unsupervised learning
Pubmed
Web of science
Open Access
Oui
Financement(s)
Fonds national suisse / Projets / 205321-182602
Fonds national suisse / Carrières / PZ00P2-185814
Fonds national suisse / Programmes / 185897
Création de la notice
26/05/2022 9:29
Dernière modification de la notice
26/04/2024 6:00
Données d'usage