MBIS: multivariate Bayesian image segmentation tool.

Détails

ID Serval
serval:BIB_BAF76E8B8FA9
Type
Article: article d'un périodique ou d'un magazine.
Collection
Publications
Institution
Titre
MBIS: multivariate Bayesian image segmentation tool.
Périodique
Computer Methods and Programs in Biomedicine
Auteur⸱e⸱s
Esteban O., Wollny G., Gorthi S., Ledesma-Carbayo M.J., Thiran J.P., Santos A., Bach-Cuadra M.
ISSN
1872-7565 (Electronic)
ISSN-L
0169-2607
Statut éditorial
Publié
Date de publication
2014
Volume
115
Numéro
2
Pages
76-94
Langue
anglais
Notes
Publication types: Journal Article ; Research Support, Non-U.S. Gov'tPublication Status: ppublish
Résumé
We present MBIS (Multivariate Bayesian Image Segmentation tool), a clustering tool based on the mixture of multivariate normal distributions model. MBIS supports multichannel bias field correction based on a B-spline model. A second methodological novelty is the inclusion of graph-cuts optimization for the stationary anisotropic hidden Markov random field model. Along with MBIS, we release an evaluation framework that contains three different experiments on multi-site data. We first validate the accuracy of segmentation and the estimated bias field for each channel. MBIS outperforms a widely used segmentation tool in a cross-comparison evaluation. The second experiment demonstrates the robustness of results on atlas-free segmentation of two image sets from scan-rescan protocols on 21 healthy subjects. Multivariate segmentation is more replicable than the monospectral counterpart on T1-weighted images. Finally, we provide a third experiment to illustrate how MBIS can be used in a large-scale study of tissue volume change with increasing age in 584 healthy subjects. This last result is meaningful as multivariate segmentation performs robustly without the need for prior knowledge.
Mots-clé
Multivariate, Reproducible research, Image segmentation, , Graph-cuts, ITK
Pubmed
Web of science
Création de la notice
01/07/2014 16:05
Dernière modification de la notice
20/08/2019 15:28
Données d'usage