Building Business Intelligence & Analytics Capabilities - A Work System Perspective
Détails
Télécharger: ICIS_2020_AWS_final.pdf (726.64 [Ko])
Etat: Public
Version: de l'auteur⸱e
Licence: Tous droits réservés
Etat: Public
Version: de l'auteur⸱e
Licence: Tous droits réservés
ID Serval
serval:BIB_BA9B2A0A5B47
Type
Actes de conférence (partie): contribution originale à la littérature scientifique, publiée à l'occasion de conférences scientifiques, dans un ouvrage de compte-rendu (proceedings), ou dans l'édition spéciale d'un journal reconnu (conference proceedings).
Collection
Publications
Institution
Titre
Building Business Intelligence & Analytics Capabilities - A Work System Perspective
Titre de la conférence
International Conference on Information Systems (ICIS 2020)
Statut éditorial
Publié
Date de publication
13/12/2020
Peer-reviewed
Oui
Langue
anglais
Résumé
Although enterprises believe that they can achieve a competitive advantage with big data and AI, their analytics initiatives’ success rate still lags behind expectations. Existing research reveals that value creation with business intelligence and analytics (BI&A) is a complex process with multiple stages between the initial investments in BI&A resources and ultimately obtaining value. While prior research mostly focused on value generation mechanisms, we still lack a thorough understanding of how enterprises actually build BI&A capabilities. We explain the process in our research using work system theory (WST). Based on case studies and focus groups, we identify four prevalent BI&A capabilities: reporting, data exploration, analytics experimentation, and analytics production. For each identified BI&A capability, we derive patterns for BI&A resource orchestration, using the WST lens. Our findings complement the BI&A value creation research stream by providing insights into capability building.
Mots-clé
Business Intelligence, Analytics, Big Data Analytics, Capability Building, Resource Orchestration, Work System Theory
Site de l'éditeur
Financement(s)
Autre / Competence Center Corporate Data Quality (CC CDQ)
Création de la notice
02/01/2021 13:02
Dernière modification de la notice
21/11/2022 8:22