Multiple Kernel Learning of Environmental Data. Case study: Analysis and Mapping of Wind Fields
Détails
ID Serval
serval:BIB_BA6BC1CA05F2
Type
Actes de conférence (partie): contribution originale à la littérature scientifique, publiée à l'occasion de conférences scientifiques, dans un ouvrage de compte-rendu (proceedings), ou dans l'édition spéciale d'un journal reconnu (conference proceedings).
Collection
Publications
Institution
Titre
Multiple Kernel Learning of Environmental Data. Case study: Analysis and Mapping of Wind Fields
Titre de la conférence
19th international conference on Artificial Neural Network ICANN, Limassol, Cyprus
Editeur
Springer Berlin Heidelberg
ISBN
978-3-642-04277-5
ISSN-L
0302-9743
Statut éditorial
Publié
Date de publication
2009
Editeur⸱rice scientifique
Alippi C., Polycarpou M., Panayiotou C., Ellinas G.
Série
5769
Pages
933-943
Langue
anglais
Résumé
The paper presents the Multiple Kernel Learning (MKL) approach as
a modelling and data exploratory tool and applies it to the problem
of wind speed mapping. Support Vector Regression (SVR) is used to
predict spatial variations of the mean wind speed from terrain features
(slopes, terrain curvature, directional derivatives) generated at
different spatial scales. Multiple Kernel Learning is applied to
learn kernels for individual features and thematic feature subsets,
both in the context of feature selection and optimal parameters determination.
An empirical study on real-life data confirms the usefulness of MKL
as a tool that enhances the interpretability of data-driven models.
a modelling and data exploratory tool and applies it to the problem
of wind speed mapping. Support Vector Regression (SVR) is used to
predict spatial variations of the mean wind speed from terrain features
(slopes, terrain curvature, directional derivatives) generated at
different spatial scales. Multiple Kernel Learning is applied to
learn kernels for individual features and thematic feature subsets,
both in the context of feature selection and optimal parameters determination.
An empirical study on real-life data confirms the usefulness of MKL
as a tool that enhances the interpretability of data-driven models.
Mots-clé
Multiple Kernel Learning, Support Vector, Regression, Feature Selection, Wind Speed Mapping
Création de la notice
25/11/2013 17:18
Dernière modification de la notice
20/08/2019 15:28