Monitoring network optimisation for spatial data classification using support vector machines

Détails

ID Serval
serval:BIB_B9BAF434498E
Type
Article: article d'un périodique ou d'un magazine.
Collection
Publications
Institution
Titre
Monitoring network optimisation for spatial data classification using support vector machines
Périodique
International Journal of Environment and Pollution
Auteur⸱e⸱s
Pozdnoukhov A., Kanevski M.
ISSN-L
1741-5101
Statut éditorial
Publié
Date de publication
2006
Peer-reviewed
Oui
Volume
28
Pages
465-484
Langue
anglais
Résumé
The paper presents a novel method for monitoring network optimisation,
based on a recent machine learning technique known as support vector
machine. It is problem-oriented in the sense that it directly answers
the question of whether the advised spatial location is important
for the classification model. The method can be used to increase
the accuracy of classification models by taking a small number of
additional measurements. Traditionally, network optimisation is performed
by means of the analysis of the kriging variances. The comparison
of the method with the traditional approach is presented on a real
case study with climate data.
Mots-clé
monitoring network optimisation, machine learning, support vector, machines, active learning, geostatistics, spatial data classification, , climate data, environmental pollution, indicator kriging.
Création de la notice
25/11/2013 17:18
Dernière modification de la notice
20/08/2019 15:27
Données d'usage