Chromosome-level organization of the regulatory genome in the Drosophila nervous system.

Détails

Ressource 1Demande d'une copie Sous embargo jusqu'au 31/08/2024.
Accès restreint UNIL
Etat: Public
Version: Author's accepted manuscript
Licence: Non spécifiée
ID Serval
serval:BIB_B8B0A2EC720F
Type
Article: article d'un périodique ou d'un magazine.
Collection
Publications
Institution
Titre
Chromosome-level organization of the regulatory genome in the Drosophila nervous system.
Périodique
Cell
Auteur⸱e⸱s
Mohana G., Dorier J., Li X., Mouginot M., Smith R.C., Malek H., Leleu M., Rodriguez D., Khadka J., Rosa P., Cousin P., Iseli C., Restrepo S., Guex N., McCabe B.D., Jankowski A., Levine M.S., Gambetta M.C.
Contributeur⸱rice⸱s
Leleu Marion, Iseli Christian, Guex Nicolas
ISSN
1097-4172 (Electronic)
ISSN-L
0092-8674
Statut éditorial
Publié
Date de publication
31/08/2023
Peer-reviewed
Oui
Volume
186
Numéro
18
Pages
3826-3844.e26
Langue
anglais
Notes
Publication types: Journal Article ; Research Support, N.I.H., Extramural ; Research Support, Non-U.S. Gov't
Publication Status: ppublish
Résumé
Previous studies have identified topologically associating domains (TADs) as basic units of genome organization. We present evidence of a previously unreported level of genome folding, where distant TAD pairs, megabases apart, interact to form meta-domains. Within meta-domains, gene promoters and structural intergenic elements present in distant TADs are specifically paired. The associated genes encode neuronal determinants, including those engaged in axonal guidance and adhesion. These long-range associations occur in a large fraction of neurons but support transcription in only a subset of neurons. Meta-domains are formed by diverse transcription factors that are able to pair over long and flexible distances. We present evidence that two such factors, GAF and CTCF, play direct roles in this process. The relative simplicity of higher-order meta-domain interactions in Drosophila, compared with those previously described in mammals, allowed the demonstration that genomes can fold into highly specialized cell-type-specific scaffolds that enable megabase-scale regulatory associations.
Mots-clé
Animals, Chromatin/genetics, DNA Packaging, Drosophila/genetics, Mammals/genetics, Neurogenesis, Neurons, Transcription Factors, Drosophila Proteins, Genome, Insect, Gene Expression Regulation, Chromosomes, Insect, Drosophila, TAD, chromosomal loop, gene regulation, genome architecture, genome organization, nervous system, neuron, transcription
Pubmed
Web of science
Open Access
Oui
Financement(s)
Fonds national suisse / 184715
Université de Lausanne
Création de la notice
11/09/2023 7:55
Dernière modification de la notice
14/11/2023 8:09
Données d'usage