ALDH1A3 Is the Key Isoform That Contributes to Aldehyde Dehydrogenase Activity and Affects <i>in Vitro</i> Proliferation in Cardiac Atrial Appendage Progenitor Cells.
Détails
Télécharger: 30087899_BIB_B7CC9CD29D69.pdf (3920.16 [Ko])
Etat: Public
Version: Final published version
Licence: CC BY 4.0
Etat: Public
Version: Final published version
Licence: CC BY 4.0
ID Serval
serval:BIB_B7CC9CD29D69
Type
Article: article d'un périodique ou d'un magazine.
Collection
Publications
Institution
Titre
ALDH1A3 Is the Key Isoform That Contributes to Aldehyde Dehydrogenase Activity and Affects <i>in Vitro</i> Proliferation in Cardiac Atrial Appendage Progenitor Cells.
Périodique
Frontiers in cardiovascular medicine
ISSN
2297-055X (Print)
ISSN-L
2297-055X
Statut éditorial
Publié
Date de publication
2018
Peer-reviewed
Oui
Volume
5
Pages
90
Langue
anglais
Notes
Publication types: Journal Article
Publication Status: epublish
Publication Status: epublish
Résumé
High aldehyde dehydrogenase (ALDH <sup>hi</sup> ) activity has been reported in normal and cancer stem cells. We and others have shown previously that human ALDH <sup>hi</sup> cardiac atrial appendage cells are enriched with stem/progenitor cells. The role of ALDH in these cells is poorly understood but it may come down to the specific ALDH isoform(s) expressed. This study aimed to compare ALDH <sup>hi</sup> and ALDH <sup>lo</sup> atrial cells and to identify the isoform(s) that contribute to ALDH activity, and their functional role. <b>Methods and Results:</b> Cells were isolated from atrial appendage specimens from patients with ischemic and/or valvular heart disease undergoing heart surgery. ALDH <sup>hi</sup> activity assessed with the Aldefluor reagent coincided with primitive surface marker expression (CD34 <sup>+</sup> ). Depending on their ALDH activity, RT-PCR analysis of ALDH <sup>hi</sup> and ALDH <sup>lo</sup> cells demonstrated a differential pattern of pluripotency genes (Oct 4, Nanog) and genes for more established cardiac lineages (Nkx2.5, Tbx5, Mef2c, GATA4). ALDH <sup>hi</sup> cells, but not ALDH <sup>lo</sup> cells, formed clones and were culture-expanded. When cultured under cardiac differentiation conditions, ALDH <sup>hi</sup> cells gave rise to a higher number of cardiomyocytes compared with ALDH <sup>lo</sup> cells. Among 19 ALDH isoforms known in human, ALDH1A3 was most highly expressed in ALDH <sup>hi</sup> atrial cells. Knocking down ALDH1A3, but not ALDH1A1, ALDH1A2, ALDH2, ALDH4A1, or ALDH8A1 using siRNA decreased ALDH activity and cell proliferation in ALDH <sup>hi</sup> cells. Conversely, overexpressing ALDH1A3 with a retroviral vector increased proliferation in ALDH <sup>lo</sup> cells. <b>Conclusions:</b> ALDH1A3 is the key isoform responsible for ALDH activity in ALDH <sup>hi</sup> atrial appendage cells, which have a propensity to differentiate into cardiomyocytes. ALDH1A3 affects <i>in vitro</i> proliferation of these cells.
Mots-clé
ALDH1A3, aldehyde dehydrogenase, cardiac progenitor cell, heart, stem cell
Pubmed
Open Access
Oui
Création de la notice
13/08/2018 13:40
Dernière modification de la notice
18/10/2023 6:10