The role of the vacuolar H+ - ATPase in membrane fusion

Détails

Demande d'une copie
ID Serval
serval:BIB_B5714FCB1054
Type
Thèse: thèse de doctorat.
Collection
Publications
Institution
Titre
The role of the vacuolar H+ - ATPase in membrane fusion
Auteur⸱e⸱s
Strasser B.
Directeur⸱rice⸱s
Mayer  A.
Détails de l'institution
Université de Lausanne, Faculté de biologie et médecine
Adresse
Faculté de biologie et de médecineUniversité de LausanneUNIL - BugnonRue du Bugnon 21 - bureau 4111CH-1015 LausanneSUISSE
Statut éditorial
Acceptée
Date de publication
2010
Langue
anglais
Nombre de pages
108
Notes
REROID:R005960394 ill.
Résumé
RésuméLa H+-ATPase vacuolaire (V-ATPase) est un complexe enzymatique composé de deux secteurs multimériques (VQ et Vi) dont l'association dans la cellule est réversible. Le secteur intramembranaire de la V-ATPase (V0) interagit physiquement avec des protéines SNARE et stimule la fusion homotypique des vacuoles de la levure (lysosomes), la sécrétion de neurotransmetteurs et d'insuline, la fusion entre phagosome et lysosome ainsi que la sécrétion des corps multivésiculaires par un mécanisme inconnu. Dans cette étude j'ai identifié des résidues d'acides amines situés dans des sous-unités de V0 impliqués dans le mécanisme de fusion des vacuoles mais non essentiels pour l'acidification vacuolaire par la V-ATPase. j'ai utilisé un protocole de mutagenèse aléatoire pour produire des libraries de mutants des sous unités de V0. Ces libraries ont été analysées in vivo afin d'identifier des alleles qui permettent la translocation des protons mais produisent une vacuole fragmentée, phénotype indiquant un défaut dans la fusion membranaire. Les vacuoles des mutants ont été isolées et caractéisées en utilisant une grande variété d'outils biochimiques pour déterminer précisément l'impact des différentes mutations sur l'accomplissement d'événements clés du processus de fusion.J'ai identifié des mutations associées à des défauts spécifiques de la fusion dans plusieurs sous-unités de V0. Dans les protéolipides c, c' et c" ces mutations se concentrent dans la partie cytosolique des domaines transmembranaires. Elles renforcent les associations entre les secteurs de la V-ATPase et entre V0 et les SNAREs. Dans la fusion vacuolaire ces mutations permettent la formation de complexes SNAREs en trans mais inhibent l'induction de la fusion. Par contre, la deletion de la sous- unité d influence les étapes de la fusion qui précèdent la formation des complexes trans-SNAREs. Mes résultats démontrent que V0 joue des rôles différents dans plusieurs étapes de la fusion et que ces fonctions sont liées au système des SNAREs. Ils différencient génétiquement les activités de V0 dans la translocation des protons et dans la fusion et identifient de nombreux résidus importants pour la fusion vacuolaire. De plus, compte tenu de la grande conservation de sequence des protéolipides chez les eukaryotes les mutations identifiées dans cette l'étude apportent de nouvelles informations pour analyser la fonction de V0 dans des organismes multicellulaires pour lesquels la function catalytique de la V-ATPase est essentielle à la survie.Résumé pour le large publicLe transport de protéines et de membranes est important pour maintenir la fonction des organelles dans la cellule. Il s'excerce au niveau des vesicules. La fusion membranaire est un processus élémentaire de ce transport. Pour fusionner deux membranes, il faut la coordination de deux activités: le rapprochement et la déstabiiization des deux membranes. La collaboration d'un ensemble de proteins conservés chez les eukaryotes, est nécessaire pour catalyser ces activités. Les proteins SNAREs sont les protagonistes principaux dans la fusion membranaire. Néanmoins, d'autres protéines, comme des Rab-GTPases et des chaperonnes, sont nécessaires pour permettre ce phénomène de fusion. Toutes ces protéines sont temporairement associées avec les SNAREs et leur fonction dans la fusion membranaire est souvent directement liée à leur activité dans cette association. Le secteur transmembranaire V0 de la V-ATPase rnteragit avec des SNAREs et est essentiel pour la fusion dans une variété de systèmes modèles comme la mouche, la souris et la levure. Le secteur V0 est composé de six protéines différentes. Avec te secteur Va, qui réside dans le cytosol, il forme la V-ATPase dont la fonction principale est l'acidification des organelles par translocation des protons à travers la membrane par un mécanisme ressemblant à celui d'une pompe. V0joue un role dans la fusion membranaire, indépendamment de son activité catalytique liée au pompage des protons, et ce rôle est encore largement méconnu à ce jour. Le but de ma thèse était de mieux comprendre l'implication de V0 dans ce contexte.Pour étudier des activités liées à la V-ATPase, la levure est un excellent modèle d'étude car elle survie à une inactivation de l'enzyme alors que le meme traitement serait léthal pour des organismes multicellulaires. Dans ma thèse j'ai utilisé la fusion homotypique de la vacuole de levure comme système modèle pour étudier le rôle de V0 dans la fusion. J'ai muté des gènes qui encodent des sous- unités de V0 et les ai introduit dans des souches privées des gènes respectifs. Dans les librairies de souches portant différentes versions de ces gènes j'ai cherché des clones exprimant une V-ATPase intacte et fonctionnelle mais qui possèdent une vacuole fragmentée. Le plus souvent, une vacuole fragmentée indique un défaut dans la fusion vacuolaire. Dans les trois types de protéolipides qui composent un cylindre dans le secteur V0, j'ai trouvé des clones avec une vacuole fragmentée. Après avoir isolé les mutations responsable de ce type de morphologie vacuolaire, j'ai isolé les vacuoles de ces clones pour étudier leur activités dans différentes étapes de la fusion vacuolaire. Les résultats de ces analyses mettent en évidence une implication de V0 dans plusieurs étapes de la fusion vacuolaire. Certaines mutations sélectionnées dans mon étude inhibent une étape précoce de la fusion qui inclue la dissociation des complexes SNARE, tandis que d'autres mutations inhibent une étape tardive du processus de fusion qui inclue la transmission d'une force disruptive dans la membrane.AbstractThe membrane-integral V0 sector of the vacuolar H+-ATPase (V-ATPase) interacts with SNARE proteins. V0 stimulates fusion between yeast vacuoles (lysosomes) (Peters et al., 2001b), secretion of neurotransmitters and insulin (Hiesinger et al., 2005a, Sun-Wada et al., 2006a), phagosome-lysosome fusion (Peri and Nusslein-Volhard, 2008) and secretion of multivesicular bodies (Liegeois et al., 2006b) by a yet unknown mechanism. In my thesis, I identified sites in V0 subunits that are involved in yeast vacuole fusion but dispensable for the proton pumping by the V-ATPase. I randomly mutagenized V0 subunits and screened in vivo for mutant alleles that support proton pumping but cause fragmented vacuoles, a phenotype indicative of a fusion defect. Mutant vacuoles were isolated and analyzed in a cell-free system, allowing assay of key events in fusion, such as trans-SNARE pairing, lipid transition and fusion pore opening (Reese et al., 2005b).Mutants with selective fusion defects were found in several V0 subunits. In the proteolipids c, c' and c", critical mutations are concentated in the cytosolic half of the transmembrane domains. These mutations rendered the V-ATPase holoenzyme more stable and modulated V0-SNARE associations. In vacuole fusion critical proteolipid mutations permitted trans-SNARE pairing but impeded the induction of lipid flow between the membranes. Deletion of subunit d, by contrast, influenced early stages of fusion that precede trans-SNARE pairing. My results show that V0 acts in several steps of the fusion process and that its function is intimately connected to the SNARE system. They genetically separate the proton pump and fusion activities of V0 and identify numerous critical residues. Given the high sequence conservation of proteolipids in eukaryotic life, the identified mutations may be helpful in analyzing the fusion function of V0 also in mammalian cells, where V- ATPase pump function is essential for survival.
Création de la notice
22/03/2011 12:45
Dernière modification de la notice
20/08/2019 15:23
Données d'usage