Image-Based Marker-Free Screening of GABAA Agonists, Antagonists, and Modulators.

Détails

Ressource 1Télécharger: 31779505_BIB_B3EBACB8FB72.pdf (1755.70 [Ko])
Etat: Public
Version: Final published version
Licence: CC BY-NC 4.0
ID Serval
serval:BIB_B3EBACB8FB72
Type
Article: article d'un périodique ou d'un magazine.
Collection
Publications
Institution
Titre
Image-Based Marker-Free Screening of GABAA Agonists, Antagonists, and Modulators.
Périodique
SLAS discovery
Auteur⸱e⸱s
Rappaz B., Jourdain P., Banfi D., Kuttler F., Marquet P., Turcatti G.
ISSN
2472-5560 (Electronic)
ISSN-L
2472-5552
Statut éditorial
Publié
Date de publication
06/2020
Peer-reviewed
Oui
Volume
25
Numéro
5
Pages
458-470
Langue
anglais
Notes
Publication types: Journal Article ; Research Support, Non-U.S. Gov't
Publication Status: ppublish
Résumé
The ionotropic GABA <sub>A</sub> receptors represent the main target for different groups of widely used drugs having hypnotic and anxiolytic effects. So far, most approaches used to assess GABA activity involve invasive low -throughput electrophysiological techniques or rely on fluorescent dyes, preventing the ability to conduct noninvasive and thus nonperturbing screens. To address this limitation, we have developed an automated marker-free cell imaging method, based on digital holographic microscopy (DHM). This technology allows the automatically screening of compounds in multiple plates without having to label the cells or use special plates. This methodological approach was first validated by screening the GABA <sub>A</sub> receptor expressed in HEK cells using a selection of active compounds in agonist, antagonist, and modulator modes. Then, in a second blind screen of a library of 3041 compounds (mostly composed of natural products), 5 compounds having a specific agonist action on the GABA <sub>A</sub> receptor were identified. The hits validated from this unbiased screen were the natural products muscimol, neurosteroid alphaxalone, and three compounds belonging to the avermectin family, all known for having an agonistic effect on the GABA <sub>A</sub> receptor. The results obtained were exempt from false negatives (structurally similar unassigned hits), and false-positive hits were detected and discarded without the need for performing electrophysiological measurements. The outcome of the screen demonstrates the applicability of our screening by imaging method for the discovery of new chemical structures, particularly regarding chemicals interacting with the ionotropic GABA <sub>A</sub> receptor and more generally with any ligand-gated ion channels and transporters.
Mots-clé
Biological Products/chemistry, Biological Products/isolation & purification, Electrophysiological Phenomena, GABA-A Receptor Agonists/chemistry, GABA-A Receptor Agonists/isolation & purification, GABA-A Receptor Antagonists/chemistry, GABA-A Receptor Antagonists/isolation & purification, High-Throughput Screening Assays/methods, Holography, Humans, Image Processing, Computer-Assisted/methods, Microscopy, Molecular Imaging/methods, Receptors, GABA-A/genetics, gamma-Aminobutyric Acid/genetics, gamma-Aminobutyric Acid/metabolism, GABAA, digital holographic microscopy, high-content screening, ligand-gated ion channels, quantitative phase imaging
Pubmed
Web of science
Open Access
Oui
Création de la notice
04/12/2019 22:46
Dernière modification de la notice
09/08/2024 15:04
Données d'usage