Testing the Role of the Red Queen and Court Jester as Drivers of the Macroevolution of Apollo Butterflies.

Détails

ID Serval
serval:BIB_B149A0125A74
Type
Article: article d'un périodique ou d'un magazine.
Collection
Publications
Institution
Titre
Testing the Role of the Red Queen and Court Jester as Drivers of the Macroevolution of Apollo Butterflies.
Périodique
Systematic Biology
Auteur⸱e⸱s
Condamine F.L., Rolland J., Höhna S., Sperling FAH, Sanmartín I.
ISSN
1076-836X (Electronic)
ISSN-L
1063-5157
Statut éditorial
Publié
Date de publication
2018
Peer-reviewed
Oui
Volume
67
Numéro
6
Pages
940-964
Langue
anglais
Résumé
In macroevolution, the Red Queen (RQ) model posits that biodiversity dynamics depend mainly on species-intrinsic biotic factors such as interactions among species or life-history traits, while the Court Jester (CJ) model states that extrinsic environmental abiotic factors have a stronger role. Until recently, a lack of relevant methodological approaches has prevented the unraveling of contributions from these 2 types of factors to the evolutionary history of a lineage. Herein, we take advantage of the rapid development of new macroevolution models that tie diversification rates to changes in paleoenvironmental (extrinsic) and/or biotic (intrinsic) factors. We inferred a robust and fully-sampled species-level phylogeny, as well as divergence times and ancestral geographic ranges, and related these to the radiation of Apollo butterflies (Parnassiinae) using both extant (molecular) and extinct (fossil/morphological) evidence. We tested whether their diversification dynamics are better explained by an RQ or CJ hypothesis, by assessing whether speciation and extinction were mediated by diversity-dependence (niche filling) and clade-dependent host-plant association (RQ) or by large-scale continuous changes in extrinsic factors such as climate or geology (CJ). For the RQ hypothesis, we found significant differences in speciation rates associated with different host-plants but detected no sign of diversity-dependence. For CJ, the role of Himalayan-Tibetan building was substantial for biogeography but not a driver of high speciation, while positive dependence between warm climate and speciation/extinction was supported by continuously varying maximum-likelihood models. We find that rather than a single factor, the joint effect of multiple factors (biogeography, species traits, environmental drivers, and mass extinction) is responsible for current diversity patterns and that the same factor might act differently across clades, emphasizing the notion of opportunity. This study confirms the importance of the confluence of several factors rather than single explanations in modeling diversification within lineages.
Mots-clé
Animals, Biodiversity, Biological Evolution, Butterflies/classification, Butterflies/genetics, Genetic Speciation, Models, Biological, Phylogeny
Pubmed
Web of science
Création de la notice
02/11/2018 17:29
Dernière modification de la notice
20/08/2019 16:20
Données d'usage