Quality of MALDI-TOF mass spectra in routine diagnostics: results from an international external quality assessment including 36 laboratories from 12 countries using 47 challenging bacterial strains.
Détails
Demande d'une copie Sous embargo indéterminé.
Accès restreint UNIL
Etat: Public
Version: de l'auteur⸱e
Licence: CC BY-NC-ND 4.0
Accès restreint UNIL
Etat: Public
Version: de l'auteur⸱e
Licence: CC BY-NC-ND 4.0
ID Serval
serval:BIB_B0CFEBB3DD03
Type
Article: article d'un périodique ou d'un magazine.
Collection
Publications
Institution
Titre
Quality of MALDI-TOF mass spectra in routine diagnostics: results from an international external quality assessment including 36 laboratories from 12 countries using 47 challenging bacterial strains.
Périodique
Clinical microbiology and infection
Collaborateur⸱rice⸱s
ESGMD study group
ISSN
1469-0691 (Electronic)
ISSN-L
1198-743X
Statut éditorial
Publié
Date de publication
02/2023
Peer-reviewed
Oui
Volume
29
Numéro
2
Pages
190-199
Langue
anglais
Notes
Publication types: Journal Article
Publication Status: ppublish
Publication Status: ppublish
Résumé
Matrix assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry (MS) is a widely used method for bacterial species identification. Incomplete databases and mass spectral quality (MSQ) still represent major challenges. Important proxies for MSQ are the number of detected marker masses, reproducibility, and measurement precision. We aimed to assess MSQs across diagnostic laboratories and the potential of simple workflow adaptations to improve it.
For baseline MSQ assessment, 47 diverse bacterial strains, which are challenging to identify by MALDI-TOF MS, were routinely measured in 36 laboratories from 12 countries, and well-defined MSQ features were used. After an intervention consisting of detailed reported feedback and instructions on how to acquire MALDI-TOF mass spectra, measurements were repeated and MSQs were compared.
At baseline, we observed heterogeneous MSQ between the devices, considering the median number of marker masses detected (range = [2-25]), reproducibility between technical replicates (range = [55%-86%]), and measurement error (range = [147 parts per million (ppm)-588 ppm]). As a general trend, the spectral quality was improved after the intervention for devices, which yielded low MSQs in the baseline assessment as follows: for four out of five devices with a high measurement error, the measurement precision was improved (p-values <0.001, paired Wilcoxon test); for six out of ten devices, which detected a low number of marker masses, the number of detected marker masses increased (p-values <0.001, paired Wilcoxon test).
We have identified simple workflow adaptations, which, to some extent, improve MSQ of poorly performing devices and should be considered by laboratories yielding a low MSQ. Improving MALDI-TOF MSQ in routine diagnostics is essential for increasing the resolution of bacterial identification by MALDI-TOF MS, which is dependent on the reproducible detection of marker masses. The heterogeneity identified in this external quality assessment (EQA) requires further study.
For baseline MSQ assessment, 47 diverse bacterial strains, which are challenging to identify by MALDI-TOF MS, were routinely measured in 36 laboratories from 12 countries, and well-defined MSQ features were used. After an intervention consisting of detailed reported feedback and instructions on how to acquire MALDI-TOF mass spectra, measurements were repeated and MSQs were compared.
At baseline, we observed heterogeneous MSQ between the devices, considering the median number of marker masses detected (range = [2-25]), reproducibility between technical replicates (range = [55%-86%]), and measurement error (range = [147 parts per million (ppm)-588 ppm]). As a general trend, the spectral quality was improved after the intervention for devices, which yielded low MSQs in the baseline assessment as follows: for four out of five devices with a high measurement error, the measurement precision was improved (p-values <0.001, paired Wilcoxon test); for six out of ten devices, which detected a low number of marker masses, the number of detected marker masses increased (p-values <0.001, paired Wilcoxon test).
We have identified simple workflow adaptations, which, to some extent, improve MSQ of poorly performing devices and should be considered by laboratories yielding a low MSQ. Improving MALDI-TOF MSQ in routine diagnostics is essential for increasing the resolution of bacterial identification by MALDI-TOF MS, which is dependent on the reproducible detection of marker masses. The heterogeneity identified in this external quality assessment (EQA) requires further study.
Mots-clé
Humans, Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods, Laboratories, Reproducibility of Results, Bacteria, Workflow, Bacterial species identification, Diagnostic performance external quality assessment, MALDI-TOF MS, Quality control, Standardisation
Pubmed
Web of science
Open Access
Oui
Création de la notice
17/06/2022 13:04
Dernière modification de la notice
20/07/2023 5:55