Achieving Conservation of Energy in Neural Network Emulators for Climate Modeling

Détails

ID Serval
serval:BIB_B08FB90B497B
Type
Actes de conférence (partie): contribution originale à la littérature scientifique, publiée à l'occasion de conférences scientifiques, dans un ouvrage de compte-rendu (proceedings), ou dans l'édition spéciale d'un journal reconnu (conference proceedings).
Collection
Publications
Titre
Achieving Conservation of Energy in Neural Network Emulators for Climate Modeling
Titre de la conférence
ICML 2019 Workshop. Climate Change: How Can AI Help?
Auteur⸱e⸱s
Beucler Tom
Statut éditorial
Publié
Date de publication
15/06/2019
Langue
anglais
Résumé
Artificial neural-networks have the potential to emulate cloud processes with higher accuracy than the semi-empirical emulators currently used in climate models. However, neural-network models do not intrinsically conserve energy and mass, which is an obstacle to using them for long-term climate predictions. Here, we propose two methods to enforce linear conservation laws in neural-network emulators of physical models: Constraining (1) the loss function or (2) the architecture of the network itself. Applied to the emulation of explicitly-resolved cloud processes in a prototype multi-scale climate model, we show that architecture constraints can enforce conservation laws to satisfactory numerical precision, while all constraints help the neural-network better generalize to conditions outside of its training set, such as global warming.
Création de la notice
21/02/2023 14:36
Dernière modification de la notice
15/10/2023 14:25
Données d'usage