Estimating biophysical variable dependences with kernels
Détails
ID Serval
serval:BIB_B04108DFF83D
Type
Actes de conférence (partie): contribution originale à la littérature scientifique, publiée à l'occasion de conférences scientifiques, dans un ouvrage de compte-rendu (proceedings), ou dans l'édition spéciale d'un journal reconnu (conference proceedings).
Collection
Publications
Institution
Titre
Estimating biophysical variable dependences with kernels
Titre de la conférence
Proceedings of the IEEE International Geoscience and Remote Sensing Symposium IGARSS, Honolulu, Hawaï
Editeur
IEEE Conference Publications
ISBN
978-1-4244-9564-1
ISSN-L
2153-6996
Statut éditorial
Publié
Date de publication
2010
Pages
828-831
Langue
anglais
Notes
Camps-Valls2010
Résumé
This paper introduces a nonlinear measure of dependence between random
variables in the context of remote sensing data analysis. The Hilbert-Schmidt
Independence Criterion (HSIC) is a kernel method for evaluating statistical
dependence. HSIC is based on computing the Hilbert-Schmidt norm of
the cross-covariance operator of mapped samples in the corresponding
Hilbert spaces. The HSIC empirical estimator is very easy to compute
and has good theoretical and practical properties. We exploit the
capabilities of HSIC to explain nonlinear dependences in two remote
sensing problems: temperature estimation and chlorophyll concentration
prediction from spectra. Results show that, when the relationship
between random variables is nonlinear or when few data are available,
the HSIC criterion outperforms other standard methods, such as the
linear correlation or mutual information.
variables in the context of remote sensing data analysis. The Hilbert-Schmidt
Independence Criterion (HSIC) is a kernel method for evaluating statistical
dependence. HSIC is based on computing the Hilbert-Schmidt norm of
the cross-covariance operator of mapped samples in the corresponding
Hilbert spaces. The HSIC empirical estimator is very easy to compute
and has good theoretical and practical properties. We exploit the
capabilities of HSIC to explain nonlinear dependences in two remote
sensing problems: temperature estimation and chlorophyll concentration
prediction from spectra. Results show that, when the relationship
between random variables is nonlinear or when few data are available,
the HSIC criterion outperforms other standard methods, such as the
linear correlation or mutual information.
Mots-clé
Kernel methods, dependence estimation
Création de la notice
25/11/2013 17:18
Dernière modification de la notice
20/08/2019 15:19