Current and Emerging Developments in Subseasonal to Decadal Prediction
Détails
Télécharger: bams-bamsD190037.pdf (5393.51 [Ko])
Etat: Public
Version: Final published version
Licence: Non spécifiée
Etat: Public
Version: Final published version
Licence: Non spécifiée
ID Serval
serval:BIB_AFC0732D5942
Type
Article: article d'un périodique ou d'un magazine.
Collection
Publications
Institution
Titre
Current and Emerging Developments in Subseasonal to Decadal Prediction
Périodique
Bulletin of the American Meteorological Society
ISSN
0003-0007
1520-0477
1520-0477
Statut éditorial
Publié
Date de publication
01/06/2020
Peer-reviewed
Oui
Volume
101
Numéro
6
Pages
E869-E896
Langue
anglais
Résumé
Weather and climate variations on subseasonal to decadal time scales can have enormous social, economic, and environmental impacts, making skillful predictions on these time scales a valuable tool for decision-makers. As such, there is a growing interest in the scientific, operational, and applications communities in developing forecasts to improve our foreknowledge of extreme events. On subseasonal to seasonal (S2S) time scales, these include high-impact meteorological events such as tropical cyclones, extratropical storms, floods, droughts, and heat and cold waves. On seasonal to decadal (S2D) time scales, while the focus broadly remains similar (e.g., on precipitation, surface and upper-ocean temperatures, and their effects on the probabilities of high-impact meteorological events), understanding the roles of internal variability and externally forced variability such as anthropogenic warming in forecasts also becomes important. The S2S and S2D communities share common scientific and technical challenges. These include forecast initialization and ensemble generation; initialization shock and drift; understanding the onset of model systematic errors; bias correction, calibration, and forecast quality assessment; model resolution; atmosphere–ocean coupling; sources and expectations for predictability; and linking research, operational forecasting, and end-user needs. In September 2018 a coordinated pair of international conferences, framed by the above challenges, was organized jointly by the World Climate Research Programme (WCRP) and the World Weather Research Programme (WWRP). These conferences surveyed the state of S2S and S2D prediction, ongoing research, and future needs, providing an ideal basis for synthesizing current and emerging developments in these areas that promise to enhance future operational services. This article provides such a synthesis.
Mots-clé
Atmospheric Science
Web of science
Site de l'éditeur
Open Access
Oui
Création de la notice
08/03/2022 14:12
Dernière modification de la notice
31/10/2024 22:43