Inositol pyrophosphate dynamics reveals control of the yeast phosphate starvation program through 1,5-IP<sub>8</sub> and the SPX domain of Pho81.

Détails

Ressource 1Demande d'une copie Sous embargo indéterminé.
Accès restreint UNIL
Etat: Public
Version: de l'auteur⸱e
Licence: CC BY 4.0
ID Serval
serval:BIB_AED4227C0003
Type
Article: article d'un périodique ou d'un magazine.
Collection
Publications
Institution
Titre
Inositol pyrophosphate dynamics reveals control of the yeast phosphate starvation program through 1,5-IP<sub>8</sub> and the SPX domain of Pho81.
Périodique
eLife
Auteur⸱e⸱s
Chabert V., Kim G.D., Qiu D., Liu G., Michaillat Mayer L., Jamsheer K M., Jessen H.J., Mayer A.
ISSN
2050-084X (Electronic)
ISSN-L
2050-084X
Statut éditorial
Publié
Date de publication
20/09/2023
Peer-reviewed
Oui
Volume
12
Langue
anglais
Notes
Publication types: Journal Article
Publication Status: epublish
Résumé
Eukaryotic cells control inorganic phosphate to balance its role as essential macronutrient with its negative bioenergetic impact on reactions liberating phosphate. Phosphate homeostasis depends on the conserved INPHORS signaling pathway that utilizes inositol pyrophosphates and SPX receptor domains. Since cells synthesize various inositol pyrophosphates and SPX domains bind them promiscuously, it is unclear whether a specific inositol pyrophosphate regulates SPX domains in vivo, or whether multiple inositol pyrophosphates act as a pool. In contrast to previous models, which postulated that phosphate starvation is signaled by increased production of the inositol pyrophosphate 1-IP <sub>7</sub> , we now show that the levels of all detectable inositol pyrophosphates of yeast, 1-IP <sub>7</sub> , 5-IP <sub>7</sub> , and 1,5-IP <sub>8</sub> , strongly decline upon phosphate starvation. Among these, specifically the decline of 1,5-IP <sub>8</sub> triggers the transcriptional phosphate starvation response, the PHO pathway. 1,5-IP <sub>8</sub> inactivates the cyclin-dependent kinase inhibitor Pho81 through its SPX domain. This stimulates the cyclin-dependent kinase Pho85-Pho80 to phosphorylate the transcription factor Pho4 and repress the PHO pathway. Combining our results with observations from other systems, we propose a unified model where 1,5-IP <sub>8</sub> signals cytosolic phosphate abundance to SPX proteins in fungi, plants, and mammals. Its absence triggers starvation responses.
Mots-clé
Animals, Cyclin-Dependent Kinases, Diphosphates, Mammals, Phosphates, Saccharomyces cerevisiae/genetics, C. neoformans, Cryptococcus neoformans, PHO pathway, SPX domain, biochemistry, cell biology, chemical biology, fungal pathogens, inositol pyrophosphate, nutrient signaling, phosphate homeostasis, saccharomyces cerevisiae, schizosaccharomyces pombe
Pubmed
Open Access
Oui
Création de la notice
25/09/2023 16:37
Dernière modification de la notice
29/09/2023 5:58
Données d'usage