Soft, Implantable Bioelectronic Interfaces for Translational Research.

Détails

ID Serval
serval:BIB_ACD7C27CDCC6
Type
Article: article d'un périodique ou d'un magazine.
Collection
Publications
Institution
Titre
Soft, Implantable Bioelectronic Interfaces for Translational Research.
Périodique
Advanced materials
Auteur⸱e⸱s
Schiavone G., Fallegger F., Kang X., Barra B., Vachicouras N., Roussinova E., Furfaro I., Jiguet S., Seáñez I., Borgognon S., Rowald A., Li Q., Qin C., Bézard E., Bloch J., Courtine G., Capogrosso M., Lacour S.P.
ISSN
1521-4095 (Electronic)
ISSN-L
0935-9648
Statut éditorial
Publié
Date de publication
04/2020
Peer-reviewed
Oui
Volume
32
Numéro
17
Pages
e1906512
Langue
anglais
Notes
Publication types: Journal Article
Publication Status: ppublish
Résumé
The convergence of materials science, electronics, and biology, namely bioelectronic interfaces, leads novel and precise communication with biological tissue, particularly with the nervous system. However, the translation of lab-based innovation toward clinical use calls for further advances in materials, manufacturing and characterization paradigms, and design rules. Herein, a translational framework engineered to accelerate the deployment of microfabricated interfaces for translational research is proposed and applied to the soft neurotechnology called electronic dura mater, e-dura. Anatomy, implant function, and surgical procedure guide the system design. A high-yield, silicone-on-silicon wafer process is developed to ensure reproducible characteristics of the electrodes. A biomimetic multimodal platform that replicates surgical insertion in an anatomy-based model applies physiological movement, emulates therapeutic use of the electrodes, and enables advanced validation and rapid optimization in vitro of the implants. Functionality of scaled e-dura is confirmed in nonhuman primates, where epidural neuromodulation of the spinal cord activates selective groups of muscles in the upper limbs with unmet precision. Performance stability is controlled over 6 weeks in vivo. The synergistic steps of design, fabrication, and biomimetic in vitro validation and in vivo evaluation in translational animal models are of general applicability and answer needs in multiple bioelectronic designs and medical technologies.
Mots-clé
Animals, Biocompatible Materials/chemistry, Biomimetics, Electric Impedance, Electric Stimulation, Equipment Design, Implantable Neurostimulators, Macaca, Microtechnology, Models, Animal, Motor Neurons/physiology, Muscles/physiology, Spinal Cord/physiology, Translational Research, Biomedical, biomimetic materials, multimodal characterization, neural implants, soft electrodes
Pubmed
Web of science
Création de la notice
02/04/2020 17:11
Dernière modification de la notice
25/02/2023 7:46
Données d'usage