User-avatar bond as diagnostic indicator for gaming disorder: A word on the side of caution.

Détails

Ressource 1Télécharger: Infanti_JBA_2024.pdf (1995.53 [Ko])
Etat: Public
Version: Final published version
Licence: CC BY-NC 4.0
ID Serval
serval:BIB_AA08BA234DFC
Type
Article: article d'un périodique ou d'un magazine.
Collection
Publications
Institution
Titre
User-avatar bond as diagnostic indicator for gaming disorder: A word on the side of caution.
Périodique
Journal of behavioral addictions
Auteur⸱e⸱s
Infanti A., Giardina A., Razum J., King D.L., Baggio S., Snodgrass J.G., Vowels M., Schimmenti A., Király O., Rumpf H.J., Vögele C., Billieux J.
ISSN
2063-5303 (Electronic)
ISSN-L
2062-5871
Statut éditorial
In Press
Peer-reviewed
Oui
Langue
anglais
Notes
Publication types: Journal Article
Publication Status: aheadofprint
Résumé
In their study, Stavropoulos et al. (2023) capitalized on supervised machine learning and a longitudinal design and reported that the User-Avatar Bond could be accurately employed to detect Gaming Disorder (GD) risk in a community sample of gamers. The authors suggested that the User-Avatar Bond is a "digital phenotype" that could be used as a diagnostic indicator for GD risk. In this commentary, our objectives are twofold: (1) to underscore the conceptual challenges of employing User-Avatar Bond for conceptualizing and diagnosing GD risk, and (2) to expound upon what we perceive as a misguided application of supervised machine learning techniques by the authors from a methodological standpoint.
Mots-clé
classification, diagnosis, gaming disorder, machine learning, user-avatar bond
Pubmed
Open Access
Oui
Création de la notice
25/11/2024 16:31
Dernière modification de la notice
30/11/2024 7:16
Données d'usage