Biophysical properties of Saccharomyces cerevisiae and their relationship with HOG pathway activation.

Détails

ID Serval
serval:BIB_A93B4D31C676
Type
Article: article d'un périodique ou d'un magazine.
Collection
Publications
Titre
Biophysical properties of Saccharomyces cerevisiae and their relationship with HOG pathway activation.
Périodique
European Biophysics Journal
Auteur⸱e⸱s
Schaber J., Adrover M.A., Eriksson E., Pelet S., Petelenz-Kurdziel E., Klein D., Posas F., Goksör M., Peter M., Hohmann S., Klipp E.
ISSN
1432-1017 (Electronic)
ISSN-L
0175-7571
Statut éditorial
Publié
Date de publication
2010
Volume
39
Numéro
11
Pages
1547-1556
Langue
anglais
Résumé
Parameterized models of biophysical and mechanical cell properties are important for predictive mathematical modeling of cellular processes. The concepts of turgor, cell wall elasticity, osmotically active volume, and intracellular osmolarity have been investigated for decades, but a consistent rigorous parameterization of these concepts is lacking. Here, we subjected several data sets of minimum volume measurements in yeast obtained after hyper-osmotic shock to a thermodynamic modeling framework. We estimated parameters for several relevant biophysical cell properties and tested alternative hypotheses about these concepts using a model discrimination approach. In accordance with previous reports, we estimated an average initial turgor of 0.6 ± 0.2 MPa and found that turgor becomes negligible at a relative volume of 93.3 ± 6.3% corresponding to an osmotic shock of 0.4 ± 0.2 Osm/l. At high stress levels (4 Osm/l), plasmolysis may occur. We found that the volumetric elastic modulus, a measure of cell wall elasticity, is 14.3 ± 10.4 MPa. Our model discrimination analysis suggests that other thermodynamic quantities affecting the intracellular water potential, for example the matrix potential, can be neglected under physiological conditions. The parameterized turgor models showed that activation of the osmosensing high osmolarity glycerol (HOG) signaling pathway correlates with turgor loss in a 1:1 relationship. This finding suggests that mechanical properties of the membrane trigger HOG pathway activation, which can be represented and quantitatively modeled by turgor.
Mots-clé
Biophysical Processes, Cell Membrane/metabolism, Cell Wall/metabolism, Elastic Modulus, Extracellular Space/metabolism, Glycerol/metabolism, Intracellular Space/metabolism, Models, Biological, Osmotic Pressure, Reproducibility of Results, Saccharomyces cerevisiae/cytology, Saccharomyces cerevisiae/metabolism, Signal Transduction, Thermodynamics
Pubmed
Open Access
Oui
Création de la notice
25/09/2012 15:54
Dernière modification de la notice
20/08/2019 16:13
Données d'usage