On the Schoenberg transformations in data analysis: theory and illustrations

Détails

Ressource 1Télécharger: BIB_A642660C70E1.P001.pdf (460.85 [Ko])
Etat: Public
Version: Final published version
Licence: Non spécifiée
ID Serval
serval:BIB_A642660C70E1
Type
Article: article d'un périodique ou d'un magazine.
Collection
Publications
Institution
Titre
On the Schoenberg transformations in data analysis: theory and illustrations
Périodique
Journal of Classification
Auteur⸱e⸱s
Bavaud F.
ISSN
1432-1343
Statut éditorial
Publié
Date de publication
2011
Peer-reviewed
Oui
Volume
28
Numéro
3
Pages
297-314
Langue
anglais
Résumé
The class of Schoenberg transformations, embedding Euclidean distances into higher dimensional Euclidean spaces, is presented, and derived from theorems on positive definite and conditionally negative definite matrices. Original results on the arc lengths, angles and curvature of the transformations are proposed, and visualized on artificial data sets by classical multidimensional scaling. A distance-based discriminant algorithm and a robust multidimensional centroid estimate illustrate the theory, closely connected to the Gaussian kernels of Machine Learning.
Mots-clé
Bernstein functions - Conditionally negative definite matrices - Discriminant analysis - Euclidean distances - Huygens principle - Isometric embedding - helix - Kernels - Menger curvature - Multidimensional scaling - Rectifiable curves - Robust centroids - Robust PCA
Création de la notice
08/10/2010 17:59
Dernière modification de la notice
21/03/2024 7:11
Données d'usage