Enforcing Analytic Constraints in Neural Networks Emulating Physical Systems.

Détails

ID Serval
serval:BIB_A4DC5F3D8416
Type
Article: article d'un périodique ou d'un magazine.
Collection
Publications
Titre
Enforcing Analytic Constraints in Neural Networks Emulating Physical Systems.
Périodique
Physical review letters
Auteur⸱e⸱s
Beucler Tom, Pritchard Michael, Rasp Stephan, Ott Jordan, Baldi Pierre, Gentine Pierre
ISSN
1079-7114 (Electronic)
ISSN-L
0031-9007
Statut éditorial
Publié
Date de publication
05/03/2021
Peer-reviewed
Oui
Volume
126
Numéro
9
Pages
098302
Langue
anglais
Notes
Publication types: Journal Article
Publication Status: ppublish
Résumé
Neural networks can emulate nonlinear physical systems with high accuracy, yet they may produce physically inconsistent results when violating fundamental constraints. Here, we introduce a systematic way of enforcing nonlinear analytic constraints in neural networks via constraints in the architecture or the loss function. Applied to convective processes for climate modeling, architectural constraints enforce conservation laws to within machine precision without degrading performance. Enforcing constraints also reduces errors in the subsets of the outputs most impacted by the constraints.
Mots-clé
General Physics and Astronomy
Pubmed
Web of science
Création de la notice
21/02/2023 14:36
Dernière modification de la notice
15/10/2023 14:23
Données d'usage