A novel integrative multi-omics approach to unravel the genetic determinants of rare diseases with application in sinusoidal obstruction syndrome.

Détails

Ressource 1Télécharger: 37018234_BIB_A2D7D4DD1EAE.pdf (1373.17 [Ko])
Etat: Public
Version: Final published version
Licence: CC BY 4.0
ID Serval
serval:BIB_A2D7D4DD1EAE
Type
Article: article d'un périodique ou d'un magazine.
Collection
Publications
Institution
Titre
A novel integrative multi-omics approach to unravel the genetic determinants of rare diseases with application in sinusoidal obstruction syndrome.
Périodique
PloS one
Auteur⸱e⸱s
Waespe N., Mlakar S.J., Dupanloup I., Rezgui M.A., Bittencourt H., Krajinovic M., Kuehni C.E., Nava T., Ansari M.
ISSN
1932-6203 (Electronic)
ISSN-L
1932-6203
Statut éditorial
Publié
Date de publication
04/2023
Peer-reviewed
Oui
Volume
18
Numéro
4
Pages
e0281892
Langue
anglais
Notes
Publication types: Clinical Trial ; Journal Article ; Research Support, Non-U.S. Gov't
Publication Status: epublish
Résumé
Genotype-phenotype analyses of rare diseases often suffer from a lack of power, due to small sample size, which makes identifying significant associations difficult. Sinusoidal obstruction syndrome (SOS) of the liver is a rare but life-threatening complication of hematopoietic stem cell transplantation (HSCT). The alkylating agent busulfan is commonly used in HSCT and known to trigger SOS. We developed a novel pipeline to identify genetic determinants in rare diseases by combining in vitro information with clinical whole-exome sequencing (WES) data and applied it in SOS patients and controls.
First, we analysed differential gene expression in six lymphoblastoid cell lines (LCLs) before and after incubation with busulfan. Second, we used WES data from 87 HSCT patients and estimated the association with SOS at the SNP and the gene levels. We then combined the results of the expression and the association analyses into an association statistic at the gene level. We used an over-representation analysis to functionally characterize the genes that were associated with a significant combined test statistic.
After treatment of LCLs with busulfan, 1708 genes were significantly up-, and 1385 down-regulated. The combination of the expression experiment and the association analysis of WES data into a single test statistic revealed 35 genes associated with the outcome. These genes are involved in various biological functions and processes, such as "Cell growth and death", "Signalling molecules and interaction", "Cancer", and "Infectious disease".
This novel data analysis pipeline integrates two independent omics datasets and increases statistical power for identifying genotype-phenotype associations. The analysis of the transcriptomics profile of cell lines treated with busulfan and WES data from HSCT patients allowed us to identify potential genetic contributors to SOS. Our pipeline could be useful for identifying genetic contributors to other rare diseases where limited power renders genome-wide analyses unpromising.
For the clinical dataset: Clinicaltrials.gov: NCT01257854. https://clinicaltrials.gov/ct2/history/NCT01257854.
Mots-clé
Humans, Busulfan/therapeutic use, Genome-Wide Association Study, Hematopoietic Stem Cell Transplantation/adverse effects, Hepatic Veno-Occlusive Disease/etiology, Multiomics, Rare Diseases/complications
Pubmed
Web of science
Open Access
Oui
Création de la notice
18/04/2023 13:20
Dernière modification de la notice
23/01/2024 7:31
Données d'usage