Mechanopathology of biofilm-like Mycobacterium tuberculosis cords.

Détails

Ressource 1Télécharger: Mechanopathology of biofilm-like Mycobacterium tuberculosis cords.pdf (22558.76 [Ko])
Etat: Public
Version: Final published version
Licence: CC BY 4.0
ID Serval
serval:BIB_A264D4C42F48
Type
Article: article d'un périodique ou d'un magazine.
Collection
Publications
Institution
Titre
Mechanopathology of biofilm-like Mycobacterium tuberculosis cords.
Périodique
Cell
Auteur⸱e⸱s
Mishra R., Hannebelle M., Patil V.P., Dubois A., Garcia-Mouton C., Kirsch G.M., Jan M., Sharma K., Guex N., Sordet-Dessimoz J., Perez-Gil J., Prakash M., Knott G.W., Dhar N., McKinney J.D., Thacker V.V.
ISSN
1097-4172 (Electronic)
ISSN-L
0092-8674
Statut éditorial
Publié
Date de publication
09/11/2023
Peer-reviewed
Oui
Volume
186
Numéro
23
Pages
5135-5150.e28
Langue
anglais
Notes
Publication types: Journal Article ; Research Support, Non-U.S. Gov't
Publication Status: ppublish
Résumé
Mycobacterium tuberculosis (Mtb) cultured axenically without detergent forms biofilm-like cords, a clinical identifier of virulence. In lung-on-chip (LoC) and mouse models, cords in alveolar cells contribute to suppression of innate immune signaling via nuclear compression. Thereafter, extracellular cords cause contact-dependent phagocyte death but grow intercellularly between epithelial cells. The absence of these mechanopathological mechanisms explains the greater proportion of alveolar lesions with increased immune infiltration and dissemination defects in cording-deficient Mtb infections. Compression of Mtb lipid monolayers induces a phase transition that enables mechanical energy storage. Agent-based simulations demonstrate that the increased energy storage capacity is sufficient for the formation of cords that maintain structural integrity despite mechanical perturbation. Bacteria in cords remain translationally active despite antibiotic exposure and regrow rapidly upon cessation of treatment. This study provides a conceptual framework for the biophysics and function in tuberculosis infection and therapy of cord architectures independent of mechanisms ascribed to single bacteria.
Mots-clé
Animals, Mice, Biofilms, Lung/microbiology, Lung/pathology, Mycobacterium tuberculosis/physiology, Tuberculosis/microbiology, Tuberculosis/pathology, Virulence, Biomechanical Phenomena, Mycobacterium tuberculosis, agent-based model, antibiotic therapy, biofilms, cords, lung-on-chip, mechanobiology, mycomembrane, serial block scanning face electron microscopy
Pubmed
Web of science
Open Access
Oui
Création de la notice
30/10/2023 12:21
Dernière modification de la notice
15/06/2024 6:15
Données d'usage