Socioeconomics status and quality of care in a population-based sample of swiss diabetic patients
Détails
Télécharger: BIB_A121B1C6B689.P001.pdf (178.12 [Ko])
Etat: Public
Version: de l'auteur⸱e
Etat: Public
Version: de l'auteur⸱e
ID Serval
serval:BIB_A121B1C6B689
Type
Actes de conférence (partie): contribution originale à la littérature scientifique, publiée à l'occasion de conférences scientifiques, dans un ouvrage de compte-rendu (proceedings), ou dans l'édition spéciale d'un journal reconnu (conference proceedings).
Sous-type
Poster: résume de manière illustrée et sur une page unique les résultats d'un projet de recherche. Les résumés de poster doivent être entrés sous "Abstract" et non "Poster".
Collection
Publications
Institution
Titre
Socioeconomics status and quality of care in a population-based sample of swiss diabetic patients
Titre de la conférence
Swiss Public Health Conference 2013
Adresse
Zürich, Switzerland, August, 15-16, 2013
Statut éditorial
Publié
Date de publication
2013
Langue
anglais
Résumé
Introduction: Low socioeconomic status (SES) is associated with higher prevalence of diabetes and worse outcomes; it has also been shown to be associated with worse quality of care. We aimed to explore the relationship between SES and quality of care in the Swiss context.
Methods: We used data from a population-based survey including 519 adult diabetic patients living in the canton of Vaud. Self-reported data on patients' and diabetes characteristics, indicators of process and outcomes of care and quality of life were collected. Dependent variables included 6 processes of care (PoC) received during the last 12 months (HbA1C, lipid, microalbuminuria, fundoscopy, feet examination and influenza vaccination) and selected clinical outcomes (blood pressure, LDL, HbA1C, diabetes-specific (ADDQoL) and generic quality of life (SF-12)). Regression analyses were performed to assess the relationship between education and income, respectively, and quality of care as measured by PoC and clinical outcomes. Adjustment was made for age, gender and comorbidities. Results: Mean age was 64.5 years, 40% were women; 19%, 56% and 25% of the patients reported primary (I), secondary (II) and tertiary (III) education. Fundoscopy was the only PoC significantly associated with education, with III education patients more likely to get the exam than those with primary education (adjOR 1.8, 95% CI 1.0-3.3). Use of composite indicators of PoC showed that compared to patients with primary education, patients with III education were more likely to receive ≥5/6 PoC (adjOR 1.9, 95% CI 1.1-3.4), and that those with II or III education were more likely to receive 4/4 PoC (adjOR 1.9, 95% CI 1.0-3.3; adjOR 2.1, 95% CI 1.1-4.1, respectively). Quality of life was the only clinical outcome significantly associated with education, with II and III education patients reporting better quality of life compared to primary education patients, as measured by the ADDQoL (β 0.6, 95% CI 0.3-1.0, β 0.6, 95% CI 0.2-1.0, respectively) and the physical component score of the SF-12 (β 2.5, 95% CI 0.2-4.8, β 3.6, 95% CI 0.9-6.4, respectively). No associations were found between income and quality of care.
Conclusion: Social inequalities have been demonstrated in Switzerland for global health indicators. Our results suggest that similar associations are found when considering quality of care measures in individuals with diabetes, but only for a few indicators.
Methods: We used data from a population-based survey including 519 adult diabetic patients living in the canton of Vaud. Self-reported data on patients' and diabetes characteristics, indicators of process and outcomes of care and quality of life were collected. Dependent variables included 6 processes of care (PoC) received during the last 12 months (HbA1C, lipid, microalbuminuria, fundoscopy, feet examination and influenza vaccination) and selected clinical outcomes (blood pressure, LDL, HbA1C, diabetes-specific (ADDQoL) and generic quality of life (SF-12)). Regression analyses were performed to assess the relationship between education and income, respectively, and quality of care as measured by PoC and clinical outcomes. Adjustment was made for age, gender and comorbidities. Results: Mean age was 64.5 years, 40% were women; 19%, 56% and 25% of the patients reported primary (I), secondary (II) and tertiary (III) education. Fundoscopy was the only PoC significantly associated with education, with III education patients more likely to get the exam than those with primary education (adjOR 1.8, 95% CI 1.0-3.3). Use of composite indicators of PoC showed that compared to patients with primary education, patients with III education were more likely to receive ≥5/6 PoC (adjOR 1.9, 95% CI 1.1-3.4), and that those with II or III education were more likely to receive 4/4 PoC (adjOR 1.9, 95% CI 1.0-3.3; adjOR 2.1, 95% CI 1.1-4.1, respectively). Quality of life was the only clinical outcome significantly associated with education, with II and III education patients reporting better quality of life compared to primary education patients, as measured by the ADDQoL (β 0.6, 95% CI 0.3-1.0, β 0.6, 95% CI 0.2-1.0, respectively) and the physical component score of the SF-12 (β 2.5, 95% CI 0.2-4.8, β 3.6, 95% CI 0.9-6.4, respectively). No associations were found between income and quality of care.
Conclusion: Social inequalities have been demonstrated in Switzerland for global health indicators. Our results suggest that similar associations are found when considering quality of care measures in individuals with diabetes, but only for a few indicators.
Création de la notice
23/10/2013 15:18
Dernière modification de la notice
20/08/2019 15:07