Spatial weights : constructing weight-compatible exchange matrices from proximity matrices
Détails
Télécharger: BIB_9F4CAA44A146.P001.pdf (3643.56 [Ko])
Etat: Public
Version: de l'auteur⸱e
Etat: Public
Version: de l'auteur⸱e
ID Serval
serval:BIB_9F4CAA44A146
Type
Actes de conférence (partie): contribution originale à la littérature scientifique, publiée à l'occasion de conférences scientifiques, dans un ouvrage de compte-rendu (proceedings), ou dans l'édition spéciale d'un journal reconnu (conference proceedings).
Collection
Publications
Institution
Titre
Spatial weights : constructing weight-compatible exchange matrices from proximity matrices
Titre de la conférence
Geographic information science : 8th International Conference, GIScience 2014, Vienna, Austria, September 24-26, 2014. Proceedings
Editeur
Springer
ISBN
0302-9743
Statut éditorial
Publié
Date de publication
2014
Peer-reviewed
Oui
Editeur⸱rice scientifique
Duckham M., Pebesma E., Stewart K., Frank A. U.
Volume
8728
Série
Lecture Notes in Computer Science
Pages
81-96
Langue
anglais
Résumé
Exchange matrices represent spatial weights as symmetric probability distributions on pairs of regions, whose margins yield regional weights, generally well-specified and known in most contexts. This contribution proposes a mechanism for constructing exchange matrices, derived from quite general symmetric proximity matrices, in such a way that the margin of the exchange matrix coincides with the regional weights. Exchange matrices generate in turn diffusive squared Euclidean dissimilarities, measuring spatial remoteness between pairs of regions.
Unweighted and weighted spatial frameworks are reviewed and compared, regarding in particular their impact on permutation and normal tests of spatial autocorrelation. Applications include tests of spatial autocorrelation with diagonal weights, factorial visualization of the network of regions, multivariate generalizations of Moran's I, as well as "landscape clustering", aimed at creating regional aggregates both spatially contiguous and endowed with similar features.
Unweighted and weighted spatial frameworks are reviewed and compared, regarding in particular their impact on permutation and normal tests of spatial autocorrelation. Applications include tests of spatial autocorrelation with diagonal weights, factorial visualization of the network of regions, multivariate generalizations of Moran's I, as well as "landscape clustering", aimed at creating regional aggregates both spatially contiguous and endowed with similar features.
Open Access
Oui
Création de la notice
27/09/2014 19:10
Dernière modification de la notice
20/08/2019 16:05