Development of a Predictive Model for Hospital-Acquired Pressure Injuries.
Détails
ID Serval
serval:BIB_9BAB8C75537C
Type
Article: article d'un périodique ou d'un magazine.
Collection
Publications
Institution
Titre
Development of a Predictive Model for Hospital-Acquired Pressure Injuries.
Périodique
Computers, informatics, nursing
ISSN
1538-9774 (Electronic)
ISSN-L
1538-2931
Statut éditorial
Publié
Date de publication
01/11/2023
Peer-reviewed
Oui
Volume
41
Numéro
11
Pages
884-891
Langue
anglais
Notes
Publication types: Journal Article
Publication Status: epublish
Publication Status: epublish
Résumé
Hospital-acquired pressure injuries are a challenge for healthcare systems, and the nurse's role is essential in their prevention. The first step is risk assessment. The development of advanced data-driven methods based on machine learning techniques can improve risk assessment through the use of routinely collected data. We studied 24 227 records from 15 937 distinct patients admitted to medical and surgical units between April 1, 2019, and March 31, 2020. Two predictive models were developed: random forest and long short-term memory neural network. Model performance was then evaluated and compared with the Braden score. The areas under the receiver operating characteristic curve, the specificity, and the accuracy of the long short-term memory neural network model (0.87, 0.82, and 0.82, respectively) were higher than those of the random forest model (0.80, 0.72, and 0.72, respectively) and the Braden score (0.72, 0.61, and 0.61, respectively). The sensitivity of the Braden score (0.88) was higher than that of long short-term memory neural network model (0.74) and the random forest model (0.73). The long short-term memory neural network model has the potential to support nurses in clinical decision-making. Implementation of this model in the electronic health record could improve assessment and allow nurses to focus on higher-priority interventions.
Mots-clé
Humans, Pressure Ulcer/prevention & control, Risk Assessment/methods, Hospitalization, ROC Curve, Hospitals, Retrospective Studies
Pubmed
Web of science
Création de la notice
08/06/2023 13:43
Dernière modification de la notice
05/09/2024 9:00