Computational Models in Electroencephalography.

Détails

Ressource 1Demande d'une copie Sous embargo indéterminé.
Accès restreint UNIL
Etat: Public
Version: de l'auteur⸱e
Licence: CC BY 4.0
ID Serval
serval:BIB_9A5DEB266FE0
Type
Article: article d'un périodique ou d'un magazine.
Sous-type
Synthèse (review): revue aussi complète que possible des connaissances sur un sujet, rédigée à partir de l'analyse exhaustive des travaux publiés.
Collection
Publications
Institution
Titre
Computational Models in Electroencephalography.
Périodique
Brain topography
Auteur⸱e⸱s
Glomb K., Cabral J., Cattani A., Mazzoni A., Raj A., Franceschiello B.
ISSN
1573-6792 (Electronic)
ISSN-L
0896-0267
Statut éditorial
Publié
Date de publication
01/2022
Peer-reviewed
Oui
Volume
35
Numéro
1
Pages
142-161
Langue
anglais
Notes
Publication types: Journal Article ; Research Support, N.I.H., Extramural ; Research Support, Non-U.S. Gov't ; Review
Publication Status: ppublish
Résumé
Computational models lie at the intersection of basic neuroscience and healthcare applications because they allow researchers to test hypotheses in silico and predict the outcome of experiments and interactions that are very hard to test in reality. Yet, what is meant by "computational model" is understood in many different ways by researchers in different fields of neuroscience and psychology, hindering communication and collaboration. In this review, we point out the state of the art of computational modeling in Electroencephalography (EEG) and outline how these models can be used to integrate findings from electrophysiology, network-level models, and behavior. On the one hand, computational models serve to investigate the mechanisms that generate brain activity, for example measured with EEG, such as the transient emergence of oscillations at different frequency bands and/or with different spatial topographies. On the other hand, computational models serve to design experiments and test hypotheses in silico. The final purpose of computational models of EEG is to obtain a comprehensive understanding of the mechanisms that underlie the EEG signal. This is crucial for an accurate interpretation of EEG measurements that may ultimately serve in the development of novel clinical applications.
Mots-clé
Brain/physiology, Computer Simulation, Electroencephalography, Humans, Models, Neurological, Clinical applications, Computational modeling, Multiscale modeling
Pubmed
Web of science
Open Access
Oui
Création de la notice
02/04/2021 13:45
Dernière modification de la notice
20/07/2022 5:39
Données d'usage